
 

Abstract— Within the last decade, the recent automation 

of vehicles such as cars and planes promise to 

fundamentally alter the microeconomics of transporting 

people and goods. In this paper, we focus on the self-flying 

planes (drones), which have been renamed Unmanned 

Aerial Systems (UAS) by the US FAA. The most 

controversial operations envisaged by the UAS industry are 

small, low-altitude UAS flights in densely populated cities - 

robotic aircraft flying in the midst of public spaces to 

deliver goods and information. This subset of robotic flight 

would be the most valuable to the nation's economy, but we 

argue that it cannot happen without a new generation of Air 

traffic control and management services. This paper 

presents a cloud based system for city-wide unmanned air 

traffic management, prototype sensor systems required by 

city police to keep the city safe, and an analysis of control 

systems for collision avoidance. 

 

Index Terms—UAV, UAS, UTM, drones, identification, traffic 

management system, smart cities, collision avoidance. 

I. INTRODUCTION 

IRCRAFT operate in National Airspace Systems (NAS for 

short), which are controlled by governments worldwide. 

The underlying principles involving control systems and 

services have engaged the control and operations research 

community since 1950 [1]. Today, both the global and United 

States (US) NAS may be on the brink of a transformation in 

scale. In 2012, the US Bureau of transportation statistics 

recorded 209,000 General Aviation and 7,400 Commercial 

Cargo/Transit aircraft. These numbers are dwarfed by annual 

US drone sales, which exceeded 250,000 aircraft in 2014 and 

are forecast to reach on million by 2018 [2]. NAS controllers 

like the US FAA or EUROCONTROL are currently structured 

to work with an industry that sells aircraft by the hundreds each 

year, not by the hundreds of thousands. Are the FAA’s of the 

world hurtling towards a change of scale? 

We perform a quick thought experiment to assess the new 

scale. If US aircraft sales were 100,000 units per year, the US 

NAS would increase by one whole order of magnitude (Note: 
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2014 sales already surpass this value). If annual drone sales 

reach one million new aircraft per year, the NAS will increase 

to the order of 10 million operating aircraft - growth by two 

orders of magnitude. Systems engineers know that a change in 

scale by an order of magnitude changes complexity, creating 

pressure for new systems built on new principles. We write this 

paper to explore the new kind of air traffic control required for 

aircraft in the millions, describe new systems we have built, and 

integrate the current literature. 

We see the contours of the new problem emerging from two 

salient features - low altitude flight with low cost air traffic 

control services. The drones driving growth are priced as 

consumer products in the range of $500 to $50,000. They are 

used as low altitude toys or tools for personal aerial 

photography. Commercial operations, still small in the US due 

to FAA restrictions [3],  are projected an economic impact of 

the tens of billions [4], led by: 

 Agriculture - for crop dusting and field imaging 

 Motion Picture and commercial Film cinematography 

 Utility and energy companies surveying hundreds of 

kilometers of power lines or pipelines 

 Delivery services such as Amazon Prime Air, UPS or 

Google’s Project Wing 
These drone uses are also low altitude flights for various 

reasons. For safety reasons, no package would be dropped to a 

consumer from above a few meters, nor would a farm spray 

insecticide from high altitude. The imaging and surveying 

applications are low altitude because the costs of imaging 

sensors need to match the costs of the drones to keep the 

economy of operations, i.e., $500 to $50,000. Cameras, thermal 

imaging, or radar sensors at these prices have short ranges 

(~100 meters).  

In the rest of this paper, low altitude is nominally defined as 

500 feet and below (~150m), following the recent FAA NPRM 

[5], which highlights altitudes of 500 ft and below as the target 

range for these drone operations. Airspace at such low altitudes 

signals a major change of style for Air Traffic Control. FAA 

FAR 91.119 requires all aircraft to stay above 1000 feet in 

congested areas and 500 feet elsewhere. Excepting airports, the 

entire air traffic control infrastructure is designed to work above 

500 feet where there is nothing but aircraft. The new airspace is 
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where humanity lives its life. 

Low-altitude is the link to cities. Cities govern the spaces 

lived by dense clusters of humanity. When aircraft fly above 

1000 feet, people do not notice and control can be left to 

national or federal agencies. However, drones flying at 50 to 

100 meters behave more like cars: they will be noticed, 

interacted with, and feared. Cities control and regulate cars 

through traffic lights, signs, speed limits, speed bumps, and 

other measures. They hold the institutional capacity, though not 

the technical capacity, to govern millions of drones flying at 

low-altitude in densely populated areas. Organizations like the 

FAA, EUROCONTROL, and emerging companies like 

Airware hold the technical capacity or expertise. The new 

unmanned air traffic control enterprise needs to be a 

collaborative enterprise between Smart Cities and NAS 

Operators, renting services pioneered by Silicon Valley. We 

present three technical products in the paper, two of which are 

built with a focus on cities. The path to scale is the distribution 

of control over the smart cities of the future. 

Two current developments indicate the emerging 

collaboration between the US FAA and the smarter cities of the 

future. 35 of 50 US states and many cities have written pending 

or enacted drone legislation suggesting a strong desire to have 

control over low altitude unmanned flight [6]. Likewise, the 

FAA has asked local law enforcement agencies to take 

responsibility for enforcing rules on unmanned flight [7]. The 

new volumes are too big for the current Air Traffic Control 

structure. The US FAA already uses 15,000 employees as 

controllers for 220,000 aircraft. How many employees will the 

current model need for 10 million drones [4]? 

The second paradigm-shifting factor is the cost required for 

the new unmanned air traffic control services. Low cost drones 

will produce commerce only with low cost air traffic control 

services. On its web site, the FAA shows how a pilot flying 

from Los Angeles to Baltimore interacts with 28 air traffic 

controllers in 11 different flight centers. Current air traffic 

control is a high-touch high-cost business that processes 87,000 

flights per day in US airspace. UPS alone delivers 17 million 

packages daily at nominally $5 a package. A million $5000 

drone flights delivering items valued under $50 would all need 

to be executed without conversing with an air traffic controller. 

In short, unmanned aircraft need unmanned air traffic control. 

Traffic lights for cars are unmanned and low-cost. 

We found two national projects targeting low cost unmanned 

air traffic control – Australia’s Smart Skies project [8], and 

NASA’s new Unmanned Traffic Management program in 2014 

[9]. NASA’s UTM has published a 2-page fact sheet envisaging 

ideas like a portable UTM box easily usable by entities without 

the technical expertise of NAS operators. Smart Skies 

prototyped and tested MATS (Mobile Aircraft Tracking 

System). However, neither program derives its products from 

the structure and economy of cities, which is why this paper 

prioritizes very different problems. For example, section II is 

about incentivizing cities and citizens to provide airspace and 

flight data. The Smart Skies MATS system is based on portable 

radar. We target even lower costs by, basing on smartphones, 

Wi-Fi, cellular data, and GPS. Dedicated Short-Range 

Communications, being driven by transportation departments 

worldwide, are essentially Wi-Fi and GPS based collision 

avoidance communications for cars [10]. Engaging cities will 

bring NASA’s UTM architecture to life. 

We have found one other paper on drones for smart cities 

[11]. They identify several challenges, of which this paper 

provides solutions for two – low altitude unmanned air traffic 

management at low-cost. There are two other papers discussing 

similar challenges [12], [13]. Other papers on drone air traffic 

control focus on reducing the operator-to-vehicle ratio [14], 

[15]. 

The aerial roboticists of the 21st century have done what 

Henry Ford did for automobiles, i.e. consumerized aircraft. The 

control engineers should now consumerize air traffic control. 

To this end, we present three pieces of work that we consider 

essential, summarized as follows. 

1. The Community Drone Service for Problems of Planning: 

This is a cloud-based platform whose first function is to 

support a citizen and city process that will create low-

altitude airspace. Airspace needs airways, obstructions 

such as building footprints and heights, landing areas and 

approach paths for services like package delivery, over-

flight permissions or prohibitions. This is section II. The 

platform includes flight planning services. The current 

flight planning service is a routing algorithm running on 

the airspace model, called the Air Parcel model, computing 

a flight path to a destination. This service would eventually 

be like the direction service on Google Maps but for the air 

in three dimensions.  

2. Management and Control Functions Coordinating Drone 

and Smart City Infrastructure: The systems required first 

are ones able to affix responsibility for every drone flight 

on some legal person. This is akin to reading the license 

plates of cars. Drones need a type of license plate readable 

by local police while the drone is in the air. The license 

plate system needs to be highly accessible, scalable, and 

reliable. We consider alternatives to aircraft tail numbers, 

and we have built two prototypes. Coordination also 

includes flight analysis services over a mobile cloud of 

boxes called Flight Integrity Units (FIU). These collect the 

data from each drone flight and then transfer it to the 

platform, which analyzes the flight for violations of FAA 

rules, city regulations, trespass, or assessment of flight 

taxes that may be city or federal. 

3. Control Functions that are purely Drone based: We have 

started with the problem of avoiding collisions between 

drones and helicopters, because they fly with people at low 

altitudes. Our principal concern is that a helicopter far 

away from a drone will trigger the drone to execute a 

collision avoidance maneuver simply to avoid an unlikely 

worst-case, i.e., the helicopter might suddenly turn and fly 

straight towards the drone at maximum speed. This would 

destroy the commercial value of drone flight. The objective 

of analysis is to find collision avoidance protocols that 

minimize unnecessary interruptions to commercial drone 

operations, while maintaining the high level of safety 

expected by people in helicopters. We find that a helicopter 

100 to 300 meters away can cause a drone to execute 

collision avoidance maneuvers. This is acceptable. The 

analyses also show that raising ADS-B transmit frequency 

from 1Hz to 2 Hz may be worthwhile. Drone-to-Drone de-



confliction services are future work.  

II. COMMUNITY DRONE PLATFORM - PROBLEMS OF PLANNING 

This is a cloud-based platform to be used by citizens and 

cities to create low altitude airspace. We present the platform 

and discuss how to incentivize citizens to use it.  

Urban unmanned aerial commerce needs structured airspace 

with clearly defined airways. This is the first purpose of the 

Community drone platform, illustrated by Figure 1. We seed 

airspace structure by taking the land parcel map from the city 

office and extruding each land parcel to 500 feet, thus creating 

an Air Parcel above it. Figure 1 shows an Air Parcel Map for 

the Berkeley campus. Each building is assumed to be a parcel. 

Ownership of the air parcel is assigned by default to the 

landowner, with air parcels over city roads being assigned to 

the city, those over parks or water bodies assigned to the park 

or water authorities, and so on. Each air parcel owner is 

empowered to login into the system and post information about 

her parcel. This is illustrated by the white “Change 

Permissions” box in Figure 1. Important information includes 

building height, flight restrictions, landing areas, and safe 

approach paths to the areas.  

The landowner needs to be motivated to post information, a 

process we make easy by a web browser. Next, we expect that 

building insurance companies will motivate parcel owners to 

post, because publishing a building height will create an 

obstacle or no-fly box of the right height visible to drone 

operators inside the air parcel. This would reduce the risk to 

insurance companies, because a drone operator entering a 

posted no-fly box could be held liable. A second platform 

capability, i.e. posting trespass restrictions on the air parcel, 

targets privacy or environmental concerns. While the part of the 

parcel above the buildings may be safe to enter, we still 

empower the parcel owner to post trespass. Restricting access 

by posting trespass can protect against unwanted photography, 

reserve airspace for clean air or low noise drones, safer 

propeller guarded drones, or other characteristics. A smart city 

could put the force of local law behind trespass posted on such 

a platform, further motivating citizens to post. Each type of 

trespasses restriction creates new problems of sensing, violation 

detection, and enforcement, discussed in section III. 

 The third platform function is flight-planning services for 

drone operators. Since we now have an airspace structure, a 

drone operator seeking to fly from an origin to a destination, 

can be served by solving a vehicle routing problem [16] in the 

Air Parcel space. The Berkeley campus air parcel map shown 

by Figure 1, makes airways on all campus roads. The buildings 

in cyan have permitted over-flights which enlarges airways, 

while those in red have not. As drone operators, we log into the 

platform, specify an origin and destination, and get a flight path 

compliant with all the posted restrictions. 

The routing algorithm currently in the platform is simple, and 

overly so. We compute paths that use only the air parcels above 

campus roads, by abstracting the campus road network into a 

graph and running Djkstra’s algorithm on it.  This is sufficient 

because the road network is built to connect all buildings. Done 

this way google maps could compute all the air routes even 

today. We would simply shift the computed route up.  

The control community has many contributions to the 

Vehicle Routing Problem. Better algorithms are possible and 

desirable for scale. The Google directions API permits 10 

requests per second from a single IP and 100,000 requests in a 

24-hour period. If 10% of UPS packages eventually become 

drone deliveries, the company would generate nearly 2 million 

routing requests per day. The next routing algorithms should be 

3-dimensional and exploit the Euclidean properties of airspace 

as done in 2-d ([17] and references therein).  

III. CO-ORDINATION FUNCTIONS FOR DRONE AND CITY 

INFRASTRUCTURE 

We anticipate management and control functions that need to 

be supported by smart cities for drone commerce, present work 

on the functions that need to be provided first, and discuss 

others that will be required when there are more drones in the 

city skies. 

A. The Unique Identifier Allocation Problem 

The airspace is only open for business when responsibility 

can be affixed on a legal person for every drone flight. This 

means each drone flight needs a unique identifier, traceable to 

the responsible legal person. Candidate unique identifiers 

include aircraft tail numbers backed by an FAA registry linking 

the number to a legal person; for cars, we have the VIN and 

license plate. In the US, the Departments of Motor Vehicles 

provide the service of tracing the license plate to a legal person. 

This is the kind of infrastructure required to put unique 

identifiers within reach of consumers. Drones are flying 

computers, meaning SIM cards or IP addresses could become 

possible unique identifiers. Telecommunications companies 

provide the tracing infrastructure for SIM cards, and ICANN 

with its affiliates the same for IP addresses. Unique identifiers 

are an expensive business because of the corporate 

infrastructure required to link them to legal persons. 

In this paper we describe a prototype based on SIM cards. 

The aircraft tail number infrastructure works on the scale of 

thousands a year, while the SIM card infrastructure works on 

the scale of millions. We propose each drone carry a Flight 

Integrity Unit (FIU) that is essentially a flying cellphone. It 

should record flight data including GPS waypoints and speed, 

and be configured with meta-data about its drone such as its 

make and model number. This identifies safety and 

environmental impact features important to citizens. Our 

current FIU is a modified Android phone. One takes 

responsibility for a drone flight by simply inserting a SIM card 

into it. Our FIU then logs all the flight data with the number of 

the inserted SIM card and transmits it over the cellular network. 

The current FIU is the phone with an App. SIM cards as unique 

identifiers can separate a legal person responsible for a flight 

from the legal person owning the drone. Aircraft tail numbers 

could be used to identify the latter. We also use the FIU 

cellphone screen to broadcast the SIM number as described 

later for visible identification by local police. 

Therefore, we propose that cities standardize the unique 

identifier to be used by any commercial drone operator flying 



in the city, and require an FIU be mounted for any flight. The 

FIU must upload its flight data (non-real time) to the 

Community drone platform and support visible identification 

by city police as discussed next. 

 
Fig. 1.  Structured airspace created by us over the UC Berkeley campus. Each 

building is a separate Air Parcel. Owners of Air parcels in red have forbidden 
over-flight by posting trespass, while the cyan air parcels permit over-flight. 

Landowners can log in using web browsers and change permissions. 

B. The Non-Real Time Identification and Flight Analysis 

Problem 

Here we focus on the problem of enabling drone operators to 

fly as good citizens in compliance with local laws, and with the 

proper payment of taxes or fees imposed by cities for 

commercial operation. As drone operators, we upload flight 

data from the FIU to the Community Drone platform, as kml 

files with the SIM card number as meta-data. The platform then 

automatically computes any air parcel violations. The violated 

parcels are colored red in Figure 2. A future platform would 

assess any relevant taxes or fees, invoice the SIM card owner 

by integrating with telecommunication databases, and transfer 

payments to the appropriate city accounts. 

C. The Real-time Drone Identification Problem 

Unmanned air traffic management and law enforcement 

functions will require identification of a drone in real-time. The 

FAA’s Air Traffic Control currently solves this problem for 

large aircraft by using secondary surveillance radar or its 

modern version called ADS-B. The system delivers an aircraft 

position labeled with the unique identifier of the aircraft, the 

same data from our FIU, but in real-time. These systems are for 

remote operators monitoring airspace. We have focus on a city 

policemen wanting to identify a drone she is looking at, much 

like the office reads the license plate number of a car. Our two 

solutions are based on cellular data communications and 

LED’s. The two solutions could be used together. We found 

patents identifying UAS using RF and color codes [18], [19] 

without performance analyses of the kind included here. 

 
Fig. 2.  The blue visualizes a drone flight path. It shows drone flight data 

uploaded to the platform by an FIU. All air parcel crossed are listed in the 

bottom right window and visualized in cyan.  Air parcels trespassed are 

highlighted in red. 

Identification by LED 

The purpose is to enable a police officer looking at a drone 

to read its unique identifier, just as one reads the license plate 

of a car. This problem needs technological enhancement 

because the drone is smaller and further away. The LED 

solution requires an FIU on the drone and a camera held by the 

police officer, much as he uses a radar gun for cars. There is one 

patent using light signals to identify a UAS [20]. 

Our FIU cellphone screen blinks a color pattern encoding the 

number of the SIM card in the FIU. The phone is attached to the 

drone as illustrated in Figure 3a. The current prototype is for 

proof of concept and encodes just the last four digits of the SIM. 

We are also experimenting with LED arrays. See Table I for a 

first comparative performance assessment. Car brake lights are 

LED’s and visible at nearly 300 meters. Problems such as the 

visible ranges, the impact of solar glare, and identification 

reliability need further research, as do radar or laser range finder 

based solutions.  

We have prototyped an FIU on a Raspberry PI connected to 

a RGB LED array and integrated with the PX4 autopilot, 

sending the FIU GPS coordinates through the MAVLink 

protocol. The Android mobile phone FIU creates a standalone 

solution, i.e., without the autopilot. The insurance company 

could install the FIU. The drone operator installs autopilots. The 

Android FIU can be attached to any UAS with any autopilot. 

The phone GPS logs the flight data and uploads it via Wi-Fi or 

the cellular data network. 

Our current blink uses only five different colors, red, green, 

cyan, yellow and pink. The sequence consists of six blinks, 

creating 15,625 possible combinations. The FIU lights each 

colors for 500ms, with a 200ms pause separating blinks. At the 

end of the sequence, there is a one-second pause to mark the 

next cycle. The maximum total time necessary to capture the 

complete blink sequence is 4.8s. We have used a sequence of 

five colors flashes so a person looking at a UAS can see the 

colors and the complete sequence. A person would have to look 

at a small drones flying at 15m/s for 72m to see the complete 

code.  

 



For the police officers identifying drones, we have 

prototyped the handheld camera device in Figure 3b. This is an 

android cell phone with a special attachable 12x zoom lens to 

increase the detection range. The cell phone camera captures 

the image. The phone has an App that uses the OpenCV library 

to detect the colors. The zoom lens increases the detection range 

by 30% - 104m during the day and 516m at night.  

Table 1 presents all the measured distances. Using a 4” phone 

screen installed beneath the drone, as seen in Figure 3a, we 

could identify the blink sequence at 87m with the naked eye 

during a sunny day and at 384m at night. The daytime range 

rises to 150m with LED’s on the drone instead of a blinking 

smartphone screen. The FAA’s 500 ft flight ceiling is 150 

meters. 

 

 
Fig. 3. a) Flight Integrity Unit (FIU) mounted on the underside of a quadrotor. 

The FIU logs and transmits all flight data with SIM card number over the 
cellular network. It also blinks a color pattern encoding the SIM number in the 

FIU. b) The prototype of our ground identification device which is a cellphone 

camera with a 12x zoom. When pointed at the blinks it decodes the color 
sequence and displays the SIM card number on its screen. 

 

There are problems in the current system. For example, we 

could not use blue in the identification color sequence. The 

background sky is mostly blue during the day and the app was 

not able to distinguish between the license plate and the sky. 

Further image processing research is required.  

In addition, we cannot identify the blinks when the vehicle is 

between the ground device and the sun. The sun is much 

brighter than the mobile screen. This motivated the switch from 

a smartphone LCD screen to LED’s. Car brake LED lights are 

visible for more than 300 meters on roads, even against the sun. 

Since we are at 150m only, our image processing could get a lot 

better. 

Identification by Cellular Data Communication 

The FIU is able to transmit aircraft position and velocity 

while flying over the cellular network. Test data in Table 2 at 

UC Berkeley shows most end-to-end ping delays are under 150 

ms with minimal loss at least in areas with good cellular 

coverage. Thus a citywide FIU integrating server could display 

a map of drones with current GPS positions and heading to 

enforcement officers. If the officer knows her own GPS 

location and the compass direction of the drone being observed, 

the map could help the officer identify that drone.  

 

This FIU based system would not be blinded by the sun as 

might happen to the LED-detecting camera. On the other hand, 

the camera and LED solution would work in areas with poor 

cellular coverage. The two approaches could be integrated. 

Our tests measured the received signal strength and the 

network latency for FIU data transmitted over the cellular 

network. The test was conducted at 100m for 10 minutes. The 

signal strength during the flight is 7.6% better than on the 

ground. However, the average communication latency is 2.6% 

better at the ground level. 

Real-time drone identification solutions need to work with 

high reliability in the following sense. If an officer cannot 

identify the drone by the prescribed combination of tools, it 

must be true with high probability that the drone is deliberately 

flying without identification and is subject to law enforcement. 

High-speed tolling systems for cars miss less than 1 in a million 

cars, meaning incorrect citation rates are extremely low. Our 

prototypes have not yet reached this level of reliability. Thus 

research into the sensor, image processing, and cloud-based 

integration systems for real-time identification is interesting 

and worthwhile. 

The next generation of problems in the city-drone 

coordination will arise as flight volumes increase. Drones will 

conflict at intersections, creating the need for de-confliction 

executed purely drone-to-drone [21], or with the equivalents of 

traffic lights and stop signs in the air [8]. The drone-drone free 

flight de-confliction algorithms work for four vehicles or less 

flying indoor. The need for virtual traffic lights in the air might 

arise at higher volumes. 

IV. DRONE-BASED CONTROL FUNCTIONS 

    Real-time functions required for safe flight should be based 

purely on the drone, similar to the architecture for automated 

highway systems [22]. We see the first required function being 

collision avoidance with manned aircraft below 500 feet or 150 

meters. These are helicopters. A manned helicopter ambulance 

could be flying to pick up a patient while an unmanned aircraft 

is autonomously delivering packages. Next come systems for 

collision avoidance with property and people, and still later 

TABLE II 
SIGNAL STRENGTH AND COMMUNICATION LATENCY WHILE FLYING 

Altitude Parameter Average Standard Deviation 

Ground 

Level 

RSSI (dBm) -55.93 1.83 

Ping Latency (ms) 74.47 23.20 

100m 
RSSI (dBm) -51.68 0.98 

Ping Latency (ms) 76.47 26.12 

 

TABLE I 

LICENSE PLATE COLOR IDENTIFICATION RANGE 

Light Emitter Environment Light Light Receiver Range 

Smartphone 

Screen 

Day 

Camera 15m 

Camera 12x 104m 
Eyes 87m 

Night 

Camera 42m 

Camera 12x 516m 

Eyes 384m 

RGB 

Ultrabright 

LEDs 

Day 

Camera 24m 

Camera 12x 158m 

Eyes 101m 

Night 
Camera 55m 
Camera 12x 516m 

Eyes 461m 

 

a) 

LED 

identification 

system 

b) 



separation services for drone and drone, or virtual traffic lights. 

Our approach to avoiding buildings is as described in section II. 

It complements sense and avoid. Here we focus on drones 

avoiding collision with helicopters. Our main concern is the 

distances at which a helicopter will cause a drone to execute 

collision avoidance maneuvers quantified as the Worst-Case 

Minimum Maneuver distance (WCMMD). This is intended to 

be an upper bound in the sense that in practice the distance 

between helicopter and drone should be smaller at initiation of 

avoidance maneuvers. Overly large distances may be safer but 

uneconomical. 

    The literature discusses cooperative and non-cooperative 

solutions. The non-cooperative rely on sense and avoid for 

collision avoidance. We focus on a communication-based 

cooperative solution using a technology like Automatic 

Dependent Surveillance-Broadcast (ADS-B). The ADSB-Out 

transponder broadcasts aircraft GPS position and velocity data 

at one Hz, which is then received in real-time by nearby aircraft 

with ADSB-In [23]. The FAA has mandated that any aircraft 

flying in the US must be equipped with an ADS-B transmitter 

by 2020. As one might expect, this ruling has sparked a rapid 

growth in ADS-B technology for drones. Manufacturers have 

started producing lightweight ADS-B transponders tailored 

specifically for small UAS, such as XPG-TR from Sagetech and 

ADS-B ONE from NextGen UAS Transponders.  

Following the literature, we model an aircraft as a ADSB 

equipped point mass and leverage the optimal control approach 

developed in [24] and [21].  We seek an avoidance maneuver 

executed by the drone alone, i.e., the drone is responsible for 

avoiding collision with a helicopter carrying people. The 

helicopter will cooperate only by transmitting position and 

velocity as ADSB-Out data. 

We adapt the work in [21] to achieve a single vehicle optimal 

maneuver. The mathematics in [21] shows the optimal control 

is the maximum acceleration with a constant optimal heading. 

We derive the heading expression. The control law is optimal 

in the sense of letting the vehicles get as close as possible before 

triggering an avoidance maneuver. A real-time avoid set can be 

computed.  

We address the following scenario: a small quadrotor, 

equipped with (ADS-B)-In must avoid a manned helicopter 

with (ADS-B)-Out. The maneuver is performed exclusively by 

the quadrotor. We assume the worst-case behavior of the 

helicopter. It flies at maximum velocity at each heading 

including the one straight towards the quadrotor. We restrict 

optimal control to be two-dimensional for simplicity.   

The basic configuration is shown in Figure 4. The quadrotor 

and the helicopter are vehicles 1 and 2, respectively. Let 𝑘 =
{1,2}, then the vehicle positions and velocities are (𝑥𝑘 , 𝑦𝑘) and 

(�̇�𝑘 , �̇�𝑘) in the world frame. The avoidance maneuver, 

expressed as the pair 𝒖1 = [𝑎1 𝜃1]𝑇 , is the quadrotor’s 

acceleration vector 𝒖1 with magnitude 𝑎1 and direction  𝜃1, 

where 𝜃1 is measured from the positive x-direction in the body 

frame of the quadrotor.  

Following [21] the optimal maneuver has constant 

acceleration. Figure 5 highlights some position trajectories in 

solid red lines under optimal control. The quadrotor is at the 

origin, and the helicopter has relative position (𝑥12(𝑡), 𝑦12(𝑡)) 

and is heading toward the quadrotor. The quadrotor starts the 

avoidance maneuver at some initial time 𝑡 = 𝑡0 in the past and 

advances to the present time 𝑡 = 0, with initial position 

(𝑥12(𝑡0), 𝑦12(𝑡0)) and final position (𝑥12(0), 𝑦12(0)). The 

trajectories are parabolas since the acceleration vector stays 

constant. The set of all possible (𝑥12(𝑡0), 𝑦12(𝑡0)) that come as 

close as possible generate the boundary of the avoid set  𝜕𝐾, 

which is indicated by the dashed red curve in Figure 5. Within 

the avoid set 𝐾, optimal control is applied. A safety set 𝑆 is 

defined by the solid gray circle with radius 𝑟𝑚𝑖𝑛  around the 

quadrotor. The set of all (𝑥12(0), 𝑦12(0)) lies on the boundary 

of the safety set 𝜕𝑆. The helicopter should never enter 𝑆. The 

largest distance to start optimal maneuver is defined as 

‖𝑥12(𝑡0), 𝑦12(𝑡0)‖2|𝑥12(𝑡0)=0 on 𝜕𝐾, we call it the worst-case 

minimum maneuver distance (WCMMD). Note that the relative 

frame is rotated such that �̇�12(𝑡0) = 0 and �̇�12(𝑡0) < 0. 

Therefore, points on 𝜕𝐾 have purely downward velocities. A 

backward rotation should be made after the optimal control 

angle 𝜃1
∗ is computed. For details, refer to [21]. 

 
Fig. 4.  The collision avoidance scenario. 

There are two goals in this section. First, we derive the 

constant optimal acceleration vector 𝒖1
∗ = [𝑎1

∗  𝜃1
∗]𝑇, which  

minimizes ‖𝑥12(𝑡0), 𝑦12(𝑡0)‖2. Second, we graph WCMMD as 

a function of several parameters. 

 
Fig. 5.  The avoidance set is in red and the safety set is in gray. 

If 𝑎𝑚𝑎𝑥  is the maximum achievable acceleration of the 

quadrotor, then 𝒖1
∗  has magnitude 𝑎1

∗ = 𝑎𝑚𝑎𝑥 18]. This leaves 

the optimal direction  𝜃1
∗ as the only unknown control variable, 

which we derive. 

Given the relative position of the two vehicles [𝑥12 𝑦12]𝑇, as 

is indicated in Figure 4, the relative dynamics are given by  



 
𝑑

𝑑𝑡
[

𝑥12

𝑦12

�̇�12

�̇�12

] = [

�̇�12

�̇�12

−𝑎1 cos 𝜃1

−𝑎1 sin 𝜃1

] (1) 

With (1), it is possible to derive 𝜃1
∗ by following the non-

cooperative pursuit-evasion game formulation in [21]. 

 𝜃1
∗ = tan−1 (

𝑦12(0)

𝑥12(0)
) + 𝜋 (2) 

Intuitively, 𝜃1
∗ is optimal because at this angle, all available 

acceleration is used to decrease the relative velocity component 

along the radial direction of the safety set 𝑆 at time 𝑡 = 0. By 

the time the helicopter touches 𝜕𝑆, this particular velocity 

component is zero. Consequently, the helicopter will fly with 

velocity 𝑣12(0) tangent to 𝜕𝑆 and not enter 𝑆. 

From Figure 5, we can see that 𝜃1
∗ is only defined on certain 

parts of 𝜕𝑆: 𝜃1
∗ ∈ [0, 𝜃𝑐] ⋃[𝜋 − 𝜃𝑐 , 𝜋] for some unknown 𝜃𝑐. At 

𝜃1
∗ = 𝜃𝑐, we have the worst-case minimum maneuver distance 

at which collision avoidance has to start, corresponding to when 

the helicopter flies directly at the quadrotor. 

To find the critical angle 𝜃𝑐 and WCMMD, we need to find 

the parabola starting at 𝑥12(𝑡0) = 0 on 𝜕𝐾. To do so, we first 

derive the relative position (𝑥12(𝑡0), 𝑦12(𝑡0)) on 𝜕𝐾 by tracing 

the dynamics backward in time. For a particular 𝜃1
∗ on 𝜕𝑆,  we 

have 

 

𝑥12(𝑡0) = (𝑟𝑚𝑖𝑛 −
𝑣12(𝑡0) sin2 𝜃1

∗

2𝑎𝑚𝑎𝑥

) cos 𝜃1
∗ 

𝑦12(𝑡0) = (𝑟𝑚𝑖𝑛 +
𝑣12(𝑡0)

2𝑎𝑚𝑎𝑥

(1 + cos2 𝜃1
∗)) sin 𝜃1

∗ 

(3) 

where 𝑣12(𝑡0) = |�̇�12(𝑡0)| is the relative speed at time 𝑡 =
𝑡0. The derivation of (3) is in Appendix I. Lastly, we solve for 

𝜃𝑐 ≜ 𝜃𝑖
∗|𝑥(𝑡0)=0,  

 𝜃𝑐 = sin−1 √2𝑎𝑚𝑎𝑥𝑟𝑚𝑖𝑛

𝑣12

,       2𝑎𝑚𝑎𝑥𝑟𝑚𝑖𝑛 < 𝑣12
2  (4) 

Now we know when to apply optimal control. Excepting 

𝑥12(𝑡0) = 0, each point on 𝜕𝐾 maps uniquely to a 𝜃1
∗ on 𝜕𝑆. 

Therefore, we first generate 𝜕𝐾 using (3) for a set of 𝜃1
∗ ∈

[0, 𝜃𝑐] ⋃[𝜋 − 𝜃𝑐 , 𝜋], then compare the helicopter’s position 

(𝑥12(𝑡), 𝑦12(𝑡)) to points on 𝜕𝐾. If (𝑥12(𝑡), 𝑦12(𝑡))  equals to 

a particular point on 𝜕𝐾, then we find the corresponding 𝜃1
∗ and 

apply  optimal control 𝒖1
∗ = [𝑎𝑚𝑎𝑥   𝜃1

∗]𝑇.  

Next, we would like to graph the WCMMD for a set of 

parameters. The parameters include the minimum separation 

distance 𝑟𝑚𝑖𝑛 , the maximum quadrotor acceleration 𝑎𝑚𝑎𝑥 , the 

relative speed 𝑣12(𝑡0) defined above in (3), and the ADS-B 

communication delay ∆𝑡. The nominal values of the parameters 

are chosen as follows. 

First, 𝑟𝑚𝑖𝑛  is chosen such that the safety set is twice the size 

of a typical helicopter, around 15m in diameter. By convention, 

a typical quadrotor is designed to lift twice its own weight. In 

this case, the quadrotor could tilt up to 60⁰, which is very 

unlikely in real-flight scenarios. Instead, a maximum tilting 

angle of 45⁰ is more practical, generating a maximum 

acceleration 𝑎𝑚𝑎𝑥 of around 10𝑚/𝑠2. The relative speed 𝑣12 is 

dominated by the helicopter speed, which we consider a value 

of 70𝑚/𝑠 for commercial helicopter. The  quadrotor speed is 

assumed to be 10m/s. Thus the parameters are: 𝑟𝑚𝑖𝑛 = 20m; 

𝑎𝑚𝑎𝑥 = 10m/s2; 𝑣12 = 80m/s.  
 

Around this nominal condition, a range of 𝑎𝑚𝑎𝑥  and 𝑣12 is 

simulated. The required WCMMD is shown in Figure 6. The 

most common cases are encapsulated in the lower-right corner, 

with the WCMMD ranging from 100 to 150 meters. The 

optimal maneuver duration vary from 1.8 to 2.5 seconds from 

simulations. Under extreme conditions, such as high wind, 

when 𝑎𝑚𝑎𝑥 is small and 𝑣12 is large, the required distance could 

increase to around 200 meters. 

 
Fig. 6.  The worst-case minimum maneuver distances (WCMMD). 

Additionally, the delay from the ADS-B communication 

could be as high as one second. The amount of delay increases 

the avoidance distance linearly by 𝑣12∆𝑡, which is roughly 

100m. Assuming a WCMMD of 150m without delay, this extra 

delay could yield up to 67% uncertainty in the result, which is 

quite significant. If the ADS-B transmitting frequency were 

higher, say 2 Hz, the uncertainty due to delay would be 

significantly reduced. 
 

V. CONCLUSION 

Drone evolution and integration into NAS’s is currently 

challenging the air traffic management community. We need 

new processes and platforms for low-altitude UAS flight. This 

paper proposes solutions for widespread UAS flight at low-

altitudes through a community platform engaging cities and 

tools for city law enforcement officers. Our discussion breaks 

down the new flight problems into three broad areas, the first of 

which is citizen engagement via a community platform   that 

will create airspace, which would be a product of city planning. 

The second focuses on vehicle-city coordination problems. To 

provide communication between aerial vehicles, we prototype 

a system of Flight Integrity Units mounted on drones and 

integrated using cloud server databases and cellular networks. 

This infrastructure will be able to handle the exponential 

network growth in the unmanned aircraft market. The third area 

is vehicle-to-vehicle coordination. To ensure safe interactions 

between a growing population of vehicles, each machine should 

be both readily identifiable and capable of avoiding collision 



without human intervention. We described our visual 

identification system using LED color sequences as well as an 

identification and tracking system using the cell phone network. 

We analyzed controls enabling unmanned aircraft to avoid 

collision with manned vehicles and showed that drones might 

start avoidance maneuvers 100 to 300 meters away from a 

helicopter. This seems acceptable, and 50 meters of this could 

be cut by taking ADS-B up to 2 Hz. 

In short, the exponentially increasing density of aircraft in the 

NAS brings several new challenges open to the control 

community.  Their solutions will demand a multidisciplinary 

team since the large-scale and required low-costs suggest 

technologies and services that are uncommon in the current 

airspace or aircraft control systems. 

VI. APPENDIX 

In the relative frame, we can keep the quadrotor at rest, and 

apply −𝑎𝑚𝑎𝑥 to the helicopter. Figure 7 shows the trajectory 

from (𝑥12(𝑡0), 𝑦12(𝑡0))  to (𝑥12(0), 𝑦12(0)). Decompose the 

trajectory into 𝑑1 along the direction  𝜃1
∗ and 𝑑2 along the 

orthogonal direction. 𝑑1 can be calculated from the Work-

Energy principle, with initial speed 𝑣𝑖 = 𝑣12(𝑡0) sin 𝜃1
∗ , final 

speed 𝑣𝑓 = 0, and constant force −𝑚𝑎𝑚𝑎𝑥. 

𝑑1 =
(𝑣12(𝑡0) sin 𝜃1

∗)2

2𝑎𝑚𝑎𝑥

 

In the orthogonal direction, the helicopter is undergoing 

constant velocity motion, thus 

𝑑2 = (𝑣12(𝑡0) cos 𝜃1
∗) (

𝑣12(𝑡0) sin 𝜃1
∗

𝑎𝑚𝑎𝑥

) 

with the second term being the time elapsed. Lastly, by simple 

geometry, 

𝑥12(𝑡0) − 𝑑1 cos 𝜃1
∗ + 𝑑2 sin 𝜃1

∗ = 𝑟𝑚𝑖𝑛 cos 𝜃1
∗ 

𝑦12(𝑡0) − 𝑑1 sin 𝜃1
∗ − 𝑑2 cos 𝜃1

∗ = 𝑟𝑚𝑖𝑛 sin 𝜃1
∗ 

which results in (3). 

 
Fig. 7.  Backward dynamics derivation diagram. 
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