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Linköping University
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Abstract—The plenary talk at DASC 2016 by Dr. Parimal
Kopardekar, the Principal Investigator of NASA UTM program,
highlighted understanding the role of volume, noise and spectrum
considerations in airspace demand-capacity modeling as the
three requests from UTM developers to the avionics research
community [1]. This paper proposes initial answers to all three
requests, for the case of unmanned aerial vehicles (UAVs) operat-
ing in low-altitude uncontrolled airspace above populated areas:
we estimate airspace capacity under several metrics centered
on traffic volume manageability, drones noise pollution and
spectrum demand. Our work aids in bridging regulators and
the industry, by providing policy makers with decision support
tools which help to quantify technological requirements which the
manufacturers must follow in order to ensure seamless operation
of small unmanned aerial systems (sUAS) in an urban airspace.

I. INTRODUCTION AND RELATED WORK

Increasing number of unmanned aerial vehicles (UAVs)
poses the challenge of establishing the unmanned traffic
management (UTM) system. A fundamental task in UTM is
capacity estimation: how much traffic can be safely accom-
modated and successfully managed within the given airspace?
The question can be studied from various perspectives, taking
into account multiple capacity-limiting factors: appearance of
hard-to-resolve conflicts (if their probability is high, capacity
management measures should be established), excessive noise
(improved technologies may be mandated to nurture social
acceptability and positive public perception of the drones
industry), communication spectrum jamming (including cy-
bersecurity considerations, as stronger encryption protocols
require more bandwidth), etc.

Airspace capacity estimation is inherited by UTM from
the ATM domain, where it is has been a topic of recurring
research interest [2]–[8]. In contrast to ATM, which mostly
deals with airport-to-airport flights scheduled and planned
in advance (often even adhering to a regular pattern), the
UTM is facing a larger number of vehicles and users with
less predictable demands, diverse flying experience and the
ability to start/end the trips essentially anywhere. That is, one
important difference between UTM and ATM is the much
stronger non-deterministic component inherent to the small
unmanned aerial systems (sUAS) traffic.

In this paper we use the probabilistic map of UAV traffic to
give sampling-based capacity estimations. We call our setup
the Likely UTM (or LiU) model. To put our sampling approach
into perspective of the large variety of stochastic models for
air traffic, used previously in the literature, we mention here
two settings on which our LiU model builds up:
• The probabilistic setup which [9] called the Dutch model,

was used in PhD thesis of Hoekstra [10], developed
by Jardin [11], and more recently explored within the
Metropolis project by TU Delft [12]. In this model the
aircraft are distributed uniformly in the given airspace.
In the basic version of the Dutch model, the direction
of flight is also uniformly distributed in 0...360, while
in the most recent work [8] different direction cones are
separated by altitude. The simplicity of the model allows
one to obtain exact formulas for conflict probabilities
and other quantities, using a single parameter tuned to
match empirical data (in [10, p. 220] the parameter is the
probability pca of conflict in the air, estimated using real
traffic observation; in [11] the parameter pt is the ratio of
the so called “element” to the area swept by an aircraft
during the observation period).

• An extension of the Dutch model is Cal model1. In Cal
model, flights endpoints are sampled based on the pop-
ulation density (and hence neither the vehicles locations
nor their headings are distributed uniformly), and each
flight is a straightline segment connecting the endpoints
elevated to a given height h (Fig. 1). As in the (basic
version of) Dutch model, all drones fly with the same
speed and occupy a single level (h = 50m), so the setup
is essentially two-dimensional. Existing results for Cal
model were obtained using simulation of the traffic.

Our LiU model is based on the simple idea, in a sense
combining Dutch model in which the probability of observing
an aircraft in any region is known (the probability is uniform)
but the origin-destination of the flights are not specified, and

1The name “Cal” was chosen in [13] for two reasons: from the fact
that the model was introduced by researchers representing University of
California Berkeley (going by Cal) [14], and from the vision expressed by
Dr. Kopardekar (representing California-based NASA Research Center) [15]:
“every home will have a drone and every home will serve as an aerodrome”.



Fig. 1. Fig. 3 from [14]: A typical UAS flight path in the Cal model

Cal model in which the origin-destinations are generated but
the probability of seeing a vehicle in any region is not known.
LiU model works with the pointwise distribution of the traffic
(similarly to the Dutch model), but the probability is not
uniform (similarly to the Cal model): using Cal model’s origin-
destination spawning and direct routing, we precompute the
probability of having a vehicle at any point in the domain
(unlike in the Dutch model, the probability is not uniform)
and use the probabilities to generate a snapshot of the traffic
(differently from existing work on Cal model, where snapshots
were simulated). The snapshots are processed to estimate
the measures of interest; we also employ the probability
distribution directly to compute expectations of the measures.

As applications of LiU model, we reproduce, nuance and
extend some of the existing simulation results, as well as
provide several new estimations both on old problems and on
a new frontier. The experiments were run for two metropolitan
regions: Bay Area in the US and Norrköping municipality in
Sweden.

Among our results are the following:

• We estimate airspace capacity defined as the number of
drones at which safety becomes compromised due to
frequent conflicts involving more than k=3 vehicles (the
definition is taken from [16], where the same capacity
estimations were obtained via simulations). LiU model
allows us to compute the capacity faster; in addition, we
estimate the capacity for a wider range of the critical de-
confliction number k (for k=2 we show how to calculate
exact expected values).

• We compute ambient noise levels that may be generated
by future drones operations, reproducing simulated met-
rics from [13]. Again, our computations are more precise
and time-efficient than the simulations; we also simulate
an additional metric – so called N55 contours [17].

• We give estimates of spectrum demand, for various op-
erational modes of sUAS.

Simulation Sampling Calculation
Conflicts [16] Sec III Sec III (collisions)

Noise [13] (Leq, L10), [17] (N55), Sec IV-A (L10) Sec IV (Leq )
Sec IV (N55)

Spectrum [18] Sec V

TABLE I
MEASURES (ROWS) OBTAINED WITH DIFFERENT METHODS (COLUMNS).

CONTRIBUTIONS OF THIS PAPER REFER TO SECTIONS WHERE THE
MEASURES ARE ESTIMATED

Table I summarizes existing and new results.
The rest of the paper is organized as follows: The next

section describes how spatial distribution of UAVs is obtained.
Section III is devoted to conflict rate investigations, using
random geometric graphs. In Section IV we use our model to
assess ambient noise levels generated by sUAS. In particular,
in both sections we report on a series of computational
experiments demonstrating efficiency of our sampling-based
algorithms: in all experiments, our implementations outper-
form the earlier simulation-based methods, allowing us to
reproduce some existing results faster and more accurately
than in the prior work, as well as to obtain new results.
Section V presents estimates of sUAS spectrum demand.
Finally, Section VI concludes the paper and discusses possible
extensions.

II. THE DRONE MAP

LiU model has the same inputs as the earlier, simulation-
based methods for capacity estimation:
• the region of interest R
• population density D(g) specified for every point g ∈ R
• the duration T of the period of interest (typically T =

12hrs [9], [13], [14], [16], i.e., the traffic was simulated
over a day)

• the expected number N of UAV operations during T
(the parameter N is varied during the experiments to
understand the effect of traffic density on the system)

We focus on very low level (VLL) uncontrolled airspace over
populated areas and assume that the demand for the airspace
is generated according to Cal model (arguments in favor of
our choices may be found in [13], [19], [20]; alternatively,
any other demand pattern may be used – e.g., UAXPAN UAV
operations forecasts from Mosaic [21], [22]): the start times of
the flights from any point a ∈ R form Poisson process whose
intensity λs(a) = N

T
D(a)∫
R
D dA is proportional to the population

density at the point, and the destination b of a flight is chosen
at random based on the density as well – the probability that
the flight ends at a point b ∈ R is p(b) = D(b)/

∫
R

D dA.
The core of LiU model is computing the pointwise distri-

bution of the traffic. The crucial observation is that for any
point g ∈ ab, along the segment between pixels a and b, the
drones flying from a to b appear over g according to Poisson
process with intensity λab = λs(a)p(b) = N

T
D(a)D(b)
(
∫
R
D dA)2 – this is

a direct consequence of the fact that the Poisson process of the
trip origins decomposes based on the destinations. Integrating
over all origin-destination pairs, we obtain that overall the
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Fig. 2. λ(g) =
∫

ab3g
λab dAdB (left), which is approximated by λ(g) =

λab + λa′b′ + λa′′b′′ + . . . in the discrete case (right)

drones appear over any point g according to the compound
Poisson process with intensity λ(g) =

∫
ab3g λab dA dB =

1
(
∫
R
D dA)2

N
T

∫
ab3g D(a)D(b) dA dB where ab 3 g = {(a, b) ∈

R2 : g ∈ ab} is the set of endpoints of all segments containing
g (Fig. 2, left).

Of course, in practice, everything is discretized: a grid L is
laid over R and the population density D(g) is given for each
grid pixel g ∈ L (see Fig. 9). The start times of the flights from
any grid pixel a ∈ L form Poisson process whose intensity
λs(a) = N

T
D(a)∑

x∈L D(x) is proportional to the population density
at the pixel, and the destination pixel b of a flight is chosen at
random based on the density as well – the probability that the
flight ends at a pixel b ∈ L is p(b) = D(b)/∑x∈L D(x). The
straightline path of UAV between pixels a and b is represented
by a sequence of grid pixels through which the drone goes
(we use Bresenham’s line drawing [23] to snap straightline
segments onto the grid); we identify the sequence with the
segment ab. We assume that the drone spends the same time
t = l/v, where l is the pixel side length and v is the drones
speed; similarly to the earlier papers [9], [14], [16], we work
with l = 150m and v = 25m/s, leading to t = 6s. With a fine
grid, the discretization serves as a reasonable approximation
to the continuous setting.

Similarly to the continuous case, for any pixel g ∈ ab the
drones flying from a to b enter g according to Poisson process
with intensity λab = λs(a)p(b) = N

T
D(a)D(b)∑
x∈L D(x) (again, this

is a direct consequence of the fact that the Poisson process
of the trip origins decomposes based on the destinations).
Summing over all origin-destination pairs, we obtain that
overall the drones enter any pixel g according to the com-
pound Poisson process with intensity λ(g) = ∑

ab3g λab =
1

(∑x∈L D(x))2
N
T

∑
ab3g D(a)D(b), where now ab 3 g = {(a, b) ∈

L2 : g ∈ ab} are the endpoints of the (pixelized) segments
containing g (Fig. 2, right).

We call the (graph of the) function m(g) = ∑
ab3g D(a)D(b)

the drone map; the map shows how likely it is to see the drones
at different pixels. Computing the map takes time cubic in the
number of pixels (but computation is easily parallelizable).
After the map is computed, a snapshot of the drone traffic can
be obtained simply by sampling the map. Fig. 3 illustrates the
map over Norrköping and a sample from it.

Overall, the number of drones n(g) that one can see in
pixel g during time t is the Poisson r.v. with parameter

λ̄(g) = λ(g)t = t
T (∑x∈L D(x))2 Nm(g). In our experiments, the

density and the values t and T do not change (we vary only
N and another parameter, r , introduced in the next section).
Therefore, to simplify the formulas, we normalize the density
so that t

T (∑x∈L D(x))2 = 1, which implies

λ̄(g) = Nm(g) (1)

.

III. LARGE-SIZE CONFLICTS AND COLLISIONS

Random geometric graphs (RGGs) play central role in our
estimation of the number of conflicts and collisions for drone
traffic; we thus begin with a short recap on RGGs. Let S be a
set of n points randomly distributed within a given region; let
r > 0 be a number. The RGG G(n, r) is an undirected graph
that has points of S as vertices, and two vertices connected
whenever the distance between them is at most r . For a natural
number k > 0, let pk(n, r) denote the probability that G(n, r)
has a connected component of size at least k. For instance:

• p1(n, r) = 1 (because any vertex is a connected compo-
nent of size 1)

• p2(n, r) is the probability that G(n, r) has an edge (an
edge is a size-2 connected component)

• pn(n, r) is the probability that the graph is connected
• pk(n, r) = 0 when k > n (because G(n, r) has only n

vertices).

A celebrated result in RGG theory is that when the points are
distributed uniformly, then for large n the probability pn(n, r)
(i.e., the probability that G(n, r) is connected) exhibits a sharp
threshold as a function of r [24]: the probability steeply jumps
from (almost) 0 to (almost) 1 as r passes over the critical value
(the threshold). In fact, it was shown that thresholds exist not
only for connectivity, but also for all “monotone” properties,
i.e., properties that continue to hold when edges are added
to the graph [25]. In particular, since having a component of
size at least k is a monotone property (adding edges does
not decrease components size), under the uniform distribution
pk(n, r) has a sharp threshold for any k.

The probabilities pk(n, r) are of interest in UTM for the
following reasons. Assume that r represents loss of separation
event, i.e., that two drones within distance r are in conflict
(or even have collided, if r is small). Then for n drones,
randomly distributed on their flight level, existence of a size-k
connected component in G(n, r) means a conflict involving k
vehicles (Fig. 4). While for small k (like k=2) the conflict may
be resolved by simple rules-of-way (like maneuver-right), for
larger k, size-k conflict may mean a safety event. This way,
pk(n, r) represent probability of a safety breach.

In particular, it is of utmost interest in UTM to understand
whether the probabilities pk(n, r) exhibit thresholds when
viewed as functions of r . Indeed, the parameter r represents
technological capabilities of the drones – communication and
navigation precision, CD&R strength, etc. It would be nice to
quantify, even approximately, what technology levels should
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Fig. 3. Left: Drone map over Norrköping; blue is the densest hexagon (Section V). Right: Traffic sample

Fig. 4. Fig. 3 from [16] (where connected components were called “clusters”):
“Abstraction of an airspace snapshot as a graph with cluster sizes indicated.
(Aircraft in conflict are shown by red dots. The conflict pairs are connected
by a black line. The arrows indicate the heading of the aircraft.)”

be mandated for the drones in order to maintain low probabil-
ity of safety events (and more generally, how the probabilities
depend on the equipage).

Unfortunately, despite the rich theory of RGG thresholds for
uniform distribution (briefly surveyed above), to our knowl-
edge no theoretical results are known for pk(n, r) for the case
when the graph vertices are distributed non-uniformly (and the
distribution of drones in the sky may be highly non-uniform –
see, eg, Fig. 3). The probabilities were assessed in [16] using
simulations, which confirmed existence of the thresholds (see
e.g., top left graph in Fig. 5). Below we reinstate the results of
the simulations in [16] (as well as present some new results)
using the drone map.

A. Measure expectations via simulation, sampling and com-
putation

We emphasize that due to the stochastic nature of UAV
traffic, most measures of our interest are random variables, and
we are estimating their expected values (more generally, one

may be interested in their distributions).2 Given the complexity
of the problem, it is likely impossible to obtain closed-form
analytical expressions for the expected values; instead, they
may be estimated via simulations, sampling or computation.
The remainder of this section describes applications of the
methods to RGGs; the next section discusses applications to
sUAS noise impact.

Sampling vs. simulation

First, we make a little technical change: instead of looking
at pk as a function of n (the sample size), we look at it as a
function of N (the overall expected daily traffic volume); this is
an equivalent view, since n and N are linearly related to each
other (summing equation (1) over the whole grid, it can be
seen that for a fixed population density, the expected sample
size is proportional to N). We will thus be concerned with
estimating pk(N, r) – the probability of observing a connected
component of size at least k in the snapshot of the traffic of
daily intensity N .

In [16], the probabilities p3(N, r) were estimated for a set
of Ns between 10 and 200000, and a set of rs between 5
and 300m. The results are shown in top left graph in Fig. 5.
Computing the probabilities took 48hrs. Using LiU model,
we reinstated the results from [16] in 3hrs; our graph (for an
even wider ranges of N and r) is in the middle top in Fig. 5.
We emphasize that the drone map is computed only once and
works all N – in sharp contrast to the simulation approach
where a separate run was done for each N .

We estimated the probabilities pk also for other k. To
quote [16], “Since transportation practice tends to eliminate
all free de-confliction problems with more than three vehicles,

2A technical note: it is common to view the probability of an event E (e.g.,
of existence of a large connected component in the drones conflict graph) as
the expected value of the indicator r.v. 1E of the event (1E equals 1 if E
happens and 0 otherwise). Indeed, if p is the probability that E happens, then
the expectation of the indicator r.v. is E[1E ] = 0 · (1 − p) + 1 · p = p.
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we choose the acceptable size of the largest de-confliction
problem as 3 and use de-confliction problem size greater than 3
as the definition of large. De-confliction literature as elaborated
in [7] shows that this number might improve in future for
automated real time resolutions.” Our results for k=3. . . 7 are
presented in Fig. 5 (due to page limit, we sometimes show
results for Bay Area and sometimes for Norrköping). As
expected, for larger k, the threshold curves move into larger
N and r .

Direct computation

Simulation and sampling provide approximations to the
expected values – the more simulation runs or more samplings
are done, the better the approximations. Having replaced
simulations by sampling, we showed above how computational
efficiency of the estimations may be improved; equivalently,
sampling allows one to obtain better approximations using
the same computational resources – CPU time, memory, etc.
(precise quantification of possible quality improvements is
beyond the scope of the paper). Here we describe how to
calculate expected values directly from the drone map; another
example is given in the next section for noise pollution.

We compute the number of conflicts, or in terms of the
connected components, the expected number of components of
size k=2 in the RGG on drones.3 By linearity of expectation,
the total expected number of conflicts, C, is the sum of the
expected number of conflicts over all pairs of pixels:

C =
∑

g,g′∈L2

C(g, g′) +
∑
g∈L

C(g) (2)

where C(g, g′) is the expected number of edges between
drones in pixels g and g′, and C(g) is the expected number
of edges between drones in g.

Estimating inter-pixel conflicts C(g, g′) may be challenging,
because existence of the edge between drones d ∈ g, d ′ ∈ g′

may, in general, depend on the exact locations of the drones
inside the pixels (Fig. 6, left). This may be handled differently,
depending on how r and l relate to each other:
• If r � l (Fig. 6, middle), the dependence of the edge

existence on the exact locations may be ignored, so
that C(g, g′)=0 whenever g and g′ are “further than r”
from each other and C(g, g′) = 1

2
∑

n,n′ nn′Pr{n(g) =
n}Pr{n(g′) = n′} for pixels g, g′ that are “closer than
r” (the division by 2 is due to each edge of RGG being
counted twice). This case is not relevant for us, since even
our largest r=500m is not much larger than l=150m.

• If r ∼ l, one could refine the grid to have the new pixel
size l ′ � r , and apply the above. However, calculations

3We chose k=2 because it is an important measure, but also because for
larger k exact computation may be too time-consuming, as one would poten-
tially need to scroll through all k-tuples of pixels; in fact, the “intermediate”
k (between small numbers and something close to n) are hard also from the
theoretical perspective: while very good formulas have been derived for p2, pn
and pk for large k (the emergence of the so called “giant component”), to
our knowledge, for general k only rough estimates are known as closed-form
solutions.

on the refined grid may take too long. We, therefore, do
not follow this approach.

• Finally, if r � l, inter-pixel edges may exist only between
adjacent pixels g, g′. Moreover, probability of such an
edge is low (Fig. 6, right), as each drone would have
to fall into width-r strip near its pixel boundary (which
happens with probability ∼ (rl)/(l2) = r/l), and in addi-
tion, the distance between the drones along the boundary
would have to be less than r (which gives an extra
probability factor of ∼ r/l). Overall, an inter-pixel edge
has probability ∼ (r/l)3 (e.g., for our r = 5m, l = 150m,
this is about 10−4) and may be ignored as a boundary
effect. We thus keep only the second term (intra-pixel
edges) in the formula (2) for the expected number of
conflicts. Now, for n drones in a (static) snapshot, the
expected number of edges in g is 1

2 n(n − 1) πr2

l2
(we

ignore the boundary effects once again and use πr2

l2
as the

probability that a drone falls within distance r of another
drone). As a drone moves during time t through the pixel,
the total number of edges is

C(n) = 1
2

n(n − 1)πr
l

(3)

Recall that the number of drones in g is Poisson r.v. n(g)
with parameter Nm(g) (equation (1)); thus the expected
number of edges in g is C(g) = ∑

n C(n)Pr{n(g) = n} =
πr
2l

∑
n n(n − 1)Pr{n(g) = n} = πr

2l (E[n2(g)] − E[n(g)]) =
πrN2m2(g)

2l (since E[n(g)] = Var[n(g)] = Nm(g)). Sum-
ming this over the whole grid and over the whole day
(T/t snapshots), we get the total expected daily number
of conflicts

Cd =
πrN2T

2lt

∑
g∈L

m2(g) (4)

Remarks: (1) More precise calculations may take into account
the initial inter-drone distance d0 and relative velocity vr : it
can be shown that the drones come closer than r iff the angle
α between d0 and vr is less than arcsin(r/d0). One could
then compute the number of edges by integrating over the
distribution of d0 and α.
(2) Interpixel edges may be accounted for with Buffon–Laplace
probabilities [26], [27] of edges intersecting grid lines.
(3) Jardin obtained the following formula for the number of
collisions [11, Eq. (10)]: CNR = pt [(Dsep ·V ·T ·A)/2]ρAC(ρAC−
1/A) where ρAC = Nss/A [11, Eq. (9)], Nss is the number
of aircraft, pt is a problem-specific parameter, Dsep is the
separation distance, V is the speed, T is the observation
time and A is the area. In our notation, Nss 7→ n,Dsep 7→
r,V 7→ v,T 7→ t, A 7→ l2, and the formula becomes
CNR =

1
2 ptrvtl2 n

l2
( n
l2
− 1/l2) = 1

2 n(n − 1)pt rl . Comparing this
with our equation (3), we may say that in Jardin’s terms, our
value for pt is π.

After the drone map is built, calculating the sum∑
g∈L m2(g) is just a linear scan over the grid, which is done

essentially instantaneously. Needless to say, this drastically
outperforms any kind of simulations which would have to
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Fig. 5. pk (N, r) for Bay Area. Top row: k = 3, 3, 4; bottom row: k = 5, 6, 7. The first graph in the top row is Fig. 7 from [16]; the other graphs are our
sampling-based estimates from LiU model in this paper

r

gg′
d

d′r

> r

r

Fig. 6. Existence of the edge may depend on where the drones are in the
pixels (left); however, when r � l, the dependence is weak. When r � l
(right), probability of inter-pixel edge is low

Fig. 7. The expected number of conflicts (blue) and flight hours (red) as
functions of N

be run separately for each N . Our estimates of Cd as (the
quadratic) function of N are plotted in blue in Fig. 7.

Our calculations may be tied to a recent MITRE re-
port [28] which proposed a maximum loss of 1 flight

per 1000 flight hours over urban areas. Assume that
r=5m implies collision and loss of flight. From the drone
map, we calculate average duration of a flight τ =

1
v |L |( |L |−1)(∑g D(g))2

∑
a,b∈L2 |ab|D(a)D(b) ≈ 2000sec for Bay

Area (we checked the number also with simulations), where
|L | is the total number of pixels. The overall expected number
of flying hours H = Nτ grows linearly with N , while the
number of collisions Cd grows quadratically (eq. (4)). Their
ratio reaches 0.001 at N = 2457 – this gives a rough traffic
intensity at which UTM measures are called for.

IV. NOISE FOOTPRINT

In this section we reinstate some simulation results [13]
on noise pollution from drone operations; we also obtain an
estimate for another noise measure. The basic setup is the
same as in [13]: any drone produces the same reference noise
of Lh=60dB at the point directly under (i.e., at distance h from)
the drone. That is, the square of the sound pressure at the point
is p2

h
= p2

0 · 10Lh/10 where p0 = 20µPa is the reference sound
pressure [29, p. 240]. Spherical spreading is assumed for the
sound propagation (6 dB drop in sound level per doubling of
distance from the source) – see Fig. 8, where p(r) is the sound
pressure at distance r from the point directly under the drone.
The sound from different vehicles is assumed uncorrelated,
and the intensities are summed up (which corresponds, e.g.,
to 20dB per 100-fold increase in the number of vehicles).

From the equation in Fig. 8, the sound intensity that a drone,
flying in a grid pixel g, produces at a pixel ` is p2

g 7→` =
p2
h
h2

h2+ |g` |2 . Suppose that n drones flew through g during the
day (i.e., during T=12hrs) and recall that we assume that each
drone spends the same time t in the pixel. Then the total sound
intensity from g to ` is nt

p2
h
h2

h2+ |g` |2 . By (1), the number of drones



h

r

p2(r) =
p2
hh

2

h2+r2

Fig. 8. Fig. 4 from [13]: Pressure square follows the inverse-square law)

seen in g during t is a Poisson r.v. with parameter Nm(g); thus
the expected noise intensity at ` from g during the whole day
(i.e., T) is T

t Nm(g)t p2
h
h2

h2+ |g` |2 = T Nm(g) p2
h
h2

h2+ |g` |2 . Summing this
over all pixels, and taking the average over time (i.e., dividing
by T), we obtain that the long-term average sound pressure at
` is p2(`) = p2

h
h2N

∑
g∈L

m(g)
h2+ |g` |2 , and the long-term average

expected noise level is Leq(`) = 10 log10(p2(`)/p2
0).

Computing the noise footprint according to the above for-
mula takes 5.5 hours for Norrköping. We emphasize that the
computations produce exact expectations for Leq(`), unlike
simulations [13] or any kind of sampling, which (as usual)
only approximate the expected values. Fig. 9 shows Leq maps
for N=5000, alongside with the approximate maps obtained
via simulations in [13]. It can be seen that the simulations
approximate the exactly computed contours reasonably well.
However, the exact contours are much smoother; in fact, on the
simulated heatmap, one can see individual flight paths taken
by drones in the particular simulation instance.

Following [13], we also estimated L10 metric in noisy
locations. The metric is the noise level that is exceeded 10%
of the time. We sampled the drone map 1000 times, using
N=5000 (the same as in [13]). For each sample we calculated
the noise at the location of interest; L10 is then simply the
0.9th quantile, ie the noise level exceeded in 100 samples.
The sampling and the calculations took a couple of minutes
altogether (after the drone map was built) – again witnessing
drastic performance improvement in comparison with hours of
simulations [13].

Fig. 10 shows how L10 change with N; as elaborated in
[13], the metric for arbitrary N is obtained by extrapolating
the values for N = 5000 with a closed-form formula. As
was also observed in [13], unlike the conflict probability, the
noise levels do not exhibit thresholds: it may be expected that
the noise will not jump up sharply as the number of sUAS
operations increases (i.e., noise, as a capacity-limiting factor,
is “better behaved” than the conflicts).

A. Audible events

We also evaluated another metric – the number of audible
events (N55). An event is a UAV flight, and it is audible
at a point g if it creates noise of at least 55dB at g. The
metric was defined and assessed in [17] using simulations
for personal unmanned vehicles in a futuristic city within
Metropolis project [12]. We simulated the traffic as we did
when estimating other noise metrics in [13]; the results are
shown in Fig. 11. It might be interesting to compare the

simulation results to some estimates from LiU model, but we
did not see a good way to obtain N55 contours via sampling
or exact computation.

V. SPECTRUM DEMAND

This section considers spectrum as a capacity-limiting fac-
tor. A commonly expressed view is that UTM may use existing
cell towers infrastructure for communication and control (in
particular, in Beyond Radio Line of Sight (BRLOS) operations
mode, the towers provide a natural way for the communication
signal to reach the UAV); for example, a recent SESAR study
[19] suggests that “. . . solutions adapted to BVLOS operations
occurring in VLL, especially in urban areas . . . require further
exploration of . . . use of mobile phones network (4G, 5G
etc.)”, while [31] even goes as far as noting “. . . that future
5G standards are being specifically designed to accommodate
UAS.”; see also [18], [32]–[34]. Estimations of peak data rates
for networks vary: earlier, [35] claimed 100Mbps downlink
(DL) and 50Mbps uplink (UL) for LTE (it is also common to
see 300Mbps DL and 75Mpbs UL [32], [36], [37]); currently,
Verizon publicly offers more realistic 50Mbps DL [38]. Note
that for video transmission from UAVs we are interested in the
UL. Assuming that DL is twice faster than UL, we get 25Mbps
UL for LTE. We make a conservative estimate that half of this
throughput, i.e., maximum data rate of Rmax=12.5Mbps will
be available for drones (the rest going to mobile devices, etc.).

In order to give upper and lower capacity bounds based on
the necessary throughput values, we look at the extremes of
possible data rate requirements for sUAS:
• At the lower end, the minimal condition is to maintain

simplest Command and Control (C2) functionality [39],
[40], i.e., use data link between the UAV and the con-
trol station for the purposes of managing the flight. In
static surroundings, UAV position updates (analogous to
aircraft’s ADS-B/ADS-C) may be sent through a channel
with low connection speed (but also with low latency,
high reliability and encryption support preventing acts
of unlawful interference), demanding only modest band-
width. However, a burst of communication will happen
when the environment changes (due, e.g., to weather
update, appearance of a new or removal of an existing
geofence, public safety UAS proximity [41, Principle 5],
etc.) and the change will have to be broadcast to all
flights in the cell [41, Principle 4]; in addition, the
updated individual flight plans will have to be delivered
simultaneously to every affected drone. Assuming that
a flight plan update consists of a dozen of waypoints,
each specified with a hundred of bits, we get that the
cell tower would have to send the data at a rate of about
a kbps/drone (this matches the throughput requirement
estimations of .1–120kbps/drone from [32] and .666–
5.5kbps/drone from [33]).

• The maximum bandwidth may be required for drones
sending live video streams – a transmission type, char-
acteristic to many envisioned sUAS use cases (inspection
and mapping, news coverage and CSI, live map provision



Fig. 9. Noise footprint for Norrköping. Left: Simulations from [13]. Right: Calculations from LiU model in this paper. Top row: noise heatmap. Bottom row:
dB contours (the pixels color-code population density (data courtesy [30]))

Fig. 10. The (logarithmic) dependence of L10 on traffic intensity N . Blue:
Norrköping municipality. Red: Bay Area.

and surveillance, search and rescue, etc.); moreover, for
an initial BVLOS (i-BVLOS) operations, a video link
may be mandated for all UAVs. Assuming good video
quality (720p) implies data rate of about 5Mbps/drone
(this is order of magnitude larger than the .3Mbps esti-

Fig. 11. N55 contours over Bay Area

mates in [33, Table 2], which did not assume high video
quality).

We use the drone map to find the most congested tower:
we consider the tiling by hexagonal cells (whose centers
are spaced 2.5km apart), and find the hexagon H with the
maximum total weight, m(H) = ∑

g∈H m(g), of the drone map
pixels inside (see Fig. 3, left) – this identifies the bottleneck



area which will be most likely jammed. The number of
vehicles in H is Poisson r.v. with parameter Nm(H). Using
per-vehicle data rates from the above, we obtain that the
minimum and maximum data rate requirements from the tower
are Poisson r.v.’s with parameters b(N) = Nm(H)kbps and
B(N) = 5Nm(H)Mbps resp.

It follows that for a “minimal” (C2-only) UTM, spectrum
will probably not be an issue: even with a 3G network,
supplying throughput of Rmax/10=1.25Mbps, it would take
more than a thousand drones in a cell to exceed the capacity
– an event of probability 10−16 for N = 2 × 106 in a single
metropolitan area, which is above even the most aggressive
forecasts. We therefore concentrate on the higher end of
the spectrum demand. Solid blue line in Fig. 12 shows the
probability Pr{B(N) > Rmax} that the available bit rate will
be exceeded; the probability exhibits a threshold, similarly to
the probabilities pk for RGGs (Section III). However, if the
cell size is reduced by a factor of 5 (common practice in
crowded areas), the threshold moves to much higher values of
N (we emphasize, however, that our computations of hexagon
weight m(H) and search for the heaviest hexagon are based on
the drone map, not population density map).4 The figure also
demonstrates effects of changing the network capacities up
and down by factors of 10, representing, e.g., LTE Advanced
(Release 10) and 3G networks resp. [35], [36], [38]. It can be
seen that 3G network does lower the capacity significantly,
as the threshold becomes less sharp and the capacity gets
exceeded, with probability .1-.2 already for smaller values of
N around 1000. At the same time, LTE Advanced might not
need to be called for in the near future, because the threshold
for LTE is already quite high (note that the N-axis on Fig. 12
is logarithmic). One may also be interested in N at which
Pr{B(N) > Rmax} passes over e.g., 0.1 (meaning the video
stream is jammed 10% of the time, or equivalently for 1/10th
of the vehicles on average). With LTE, this happens already
with thousands of drones per day (which may be expected in
the reality), motivating employment of the Advanced networks
in UTM (for which the 10% is reached well after 10000
operations).

On the methodology side, we remark that only the hexagon
weight m(H) is computed from the drone map; the probability
graphs are just theoretical plots of the distributions. In this
sense the presented results fall into the category of exact
calculations (no simulation or sampling is used to obtain
them).

VI. CONCLUSION

We evaluated several measures related to UTM de-
mand/capacity imbalance in terms of volume, noise and
spectrum; on the technical side, we proposed to use sam-
pling instead of simulation. While the sampling outperformed

4Other values are possible: e.g., cells of 120nmi in diameter were used in
[18]. Note that [18] also viewed Rmax=1.5Gbps as “. . . a very reasonable
volume even for current wireless infrastructure – an amount that could
be comfortably supported by single cell tower with equipment that is not
particularly new.”, while our value for LTE capacity Rmax is two orders of
magnitude smaller.

Fig. 12. Solid blue: Probability Pr{B(N ) > Rmax } of exceeding LTE data
rate capacity. Dashed blue: The same probability for 500m-spaced hexagons in
the tiling. Green and red: Probabilities Pr{B(N ) > 10Rmax } and Pr{B(N ) >
Rmax/10} resp. of exceeding LTE Advanced and 3G data rate capacities resp.

simulation in terms of runtime, we remark that in general
simulation allows one to look at the full dynamics of the
process while sampling produces only static snapshots. In
particular, while for noise- and spectrum-based capacity es-
timation it may be enough to know only the locations of the
drones, for a proper conflict avoidance the velocity vectors
of conflicting flights are also of importance. In principle,
our LiU model may be extended by adding the direction-of-
flight distribution at every pixel, so that the resulting joint
distribution would then be sampled for more sophisticated
CD&R scenarios taking into account velocity differences (cf.
Remark (1) after eq. (4)); however, such an extension would
probably be too computationally demanding. On the other
hand, for UAVs which are able to hover, the relative velocities
could be less crucial than for manned aircraft deconfliction:
direction-oblivious hover-only CD&R might potentially work
for sUAS, albeit at the price of reduced efficiency (we are
currently quantifying these and related tradeoffs [42]). Another
possible extension is to build the drone map in the case when
there are obstacles for the UAV flights (geofences). In the
presence of geofences, simulations may take even more time
due to the need to compute obstacle-avoiding paths (instead
of just taking a straightline segments, as in Cal model), which
might make our LiU model and sampling even more attractive.
Last but not least, it may be interesting to modify the statistical
models to include operational constraints like flow control,
airways (or the equivalent for sUAS), ”smearing” the noise
exposure away from points directly under a heavily trafficked
path (similarly to how it is done in ATM in the vicinity of
airports), etc.
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