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Abstract—This paper provides estimates for ambient
noise levels that may be generated by future unmanned
air traffic in low-altitude uncontrolled urban airspace. It is
motivated by the need to assess the aural impact on com-
munities from such large-scale close proximity unmanned
aircraft operations. We simulate unmanned traffic over
urban areas and estimate the noise footprint generated
over a day. We compute four metrics namely Leq (the
long term Average dB level), Ln (dB level exceeded n%
of the time over a location for n = 10, 50, 90), A55
(Area affected by noise above 55dB) and P55 (population
affected by noise above 55dB). The effect of increasing
traffic density, varying source noise and different operation
altitudes on the measured noise levels is also captured.
The estimates show that noise levels alone will not be a
nuisance especially with an expected altitude of high speed
operations above 200ft. Future work should measure the
spectral content of the sound and the auditory impact of
specific frequencies.

Keywords—Noise, Capacity, Airspace, unmanned avia-
tion

I. Introduction

The advent of civil unmanned aviation has changed the
dynamics of interaction between aircraft and society. While
small Unmanned Aircraft Systems (sUAS) (commonly known
as drones) based applications show promise in the areas
of package delivery[1], agriculture, infrastructure inspection,
aerial mapping and so on, they have also raised several con-
cerns regarding public safety, security, privacy and community
noise. This exacerbates the existing negative public perception
of the industry owing to the military history of unmanned
aircraft. In addition, understanding the role of noise in airspace
demand-capacity modeling stands out as one of the requests
from UAV Traffic Management (UTM) developers to the
avionics research community [2].

In this paper, we focus on addressing the community noise
concern. What noise levels will be generated by large-scale
low-altitude (below 500ft) sUAS operations in future? What
proportion of the areas and population will be affected?
These questions are important for regulators, operators and
community alike. Hence, we seek to answer them by simulating
the noise levels to quantify the aural impact of large-scale
unmanned traffic operations.

Existing noise estimation approaches are derived primarily
for manned civil aviation aircraft based on well researched
source noise and sound propagation and transmission loss

models for those aircraft. Since such detailed information is
very limited for expected future sUAS[3], we assume the point
source model for the sUAS and use the sound pressure level
formula to compute the sound pressure at a distance. Despite
its simplicity, our model agrees well with the measurements
taken by NASA [4].

As many as thousands of low-altitude, high-speed unmanned
flights a day may be expected in a metropolitan region [5].
We therefore simulate this sUAS traffic for two separate
metropolitan regions, namely Norrköping municipality in
Sweden and the San Francisco Bay Area in the US. We
measure the net sound pressure produced at different points
across the region and evaluate our noise metrics.

Section II discusses the role of noise estimation in aviation
policy, the approaches to measure sUAS traffic noise impact
so far and our selection of the model, in detail. It also presents
reasons for the chosen metrics and traffic densities in our study.
The simulation parameters, noise metric definitions and the
detailed simulation methodology are described in section III.

Preliminary results show low community impact and are
presented in section IV. Although the noise levels are low, the
aural perception may still be substantial owing to the prox-
imity of operations. A detailed discussion of this notion and
proposed future extensions conclude this extended abstract
in Section V.

II. Literature Review

Noise estimation has played an important role in the history
of aviation policy [6]. Research has contributed towards the
creation of standards for aircraft noise and development
of regulations for minimizing impact of airport noise [7].
Standardized noise assessment models such as INM[8], now
replaced by AEDT[9] have become a part of industry practice.

However, extending these standards and regulations to
the unmanned traffic is not quite straightforward. First, the
aero-acoustics of commercial and general aviation manned
aircraft, incorporated in these models, have been studied and
understood over the years. For future sUAS, such information
is lacking, owing to the nascency of related research. Intratep
et. al. [3], Herreman [10] and Cabell et. al. [4] present good
examples of attempts in that direction. But the aircraft studied
in their work are still a very small subset of sUAS that will
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be used in future and hence not adequate enough.
Second, in the afore-mentioned models, airports are distinct

zones of concentrated noise. Interaction between commercial
aircraft and community, and their noise impact is localized to
these zones. Hence, airport characteristics (runway location,
orientation, etc.) and operational characteristics (approach
and departure profiles, flight tracks, etc.) become necessary
inputs to the models. For the rest of the flight, regulations
keep the aircraft well above the populace. With respect to
sUAS, this will change completely in future when, in the words
of Dr. Kopardekar [11], “every home will have a drone and
every home will serve as an aerodrome”. The aircraft and
community interaction will become much more dynamic and
dispersed, and the models need to account for that.

We therefore use a basic model to produce a first order
estimate of the ambient noise levels generated by sUAS traffic.
We assume the aircraft to be point sources producing sound
at a certain decibel (dB) level. The spectral characteristics
would ideally vary with the type of aircraft. Since we only
estimate the noise levels and not annoyance, which depends
on the spectral characteristics, the type and model of aircraft
can be ignored; instead, an average reference noise can be
used for the estimation of the long-term mean of the noise
pollution. Further, owing to the diversity in the nature of
proposed operations, we follow the approach in [5], henceforth
referred to as the Cal model, to generate sUAS traffic based
on population density of the region and evaluate the noise
footprints for the region.1

The most recent study from SESAR[12] found that regular
service routes will be used by less than ten percent of the
projected number of Unmanned Aircraft Systems (UAS). In
addition, long range light load operations have the highest
projected level of autonomy [12](p. 74). Last but not least, it is
envisaged that in the low-altitude airspace, densely populated
usage will account for almost 90% of mileage and about three-
fourths of total hours flown [12](p. 38). This indicates that
the majority of the traffic demand may actually follow the
Cal model, which further estimates as many as 100,000 low-
altitude, high-speed unmanned flights a day in a metropolitan
region at maturity.

The noise footprints of unmanned aircraft for various traffic
paradigms have been previously studied in [13] for mixed traffic
of Personal Aerial Vehicles (PAV)(i.e. flying cars and buses)
during the morning and evening hours when people massively
move to and from the center of a futuristic city. Our study
looks much closer into the future than [13]. We consider only
sUAS that do not carry people and simulate traffic using layout
of existing metropolitan regions (Norrköping municipality in
Sweden and Bay Area in the US), using the Cal model based
on the population density. In particular, existing and near-
future sUAS operations have shorter flight ranges by nature
in comparison to the distant-future PAVs and UAS used in
[13]. This makes some of the paradigms from [13], such as
radial paths, inapplicable for them.

1The name ”Cal” is chosen for two reasons: from the fact that the
model was introduced by researchers representing University of California
Berkeley (going by Cal), and from the above-cited vision expressed by
Dr. Parimal Koparderkar (representing California-based NASA Research
Center).

Finally, to quantify the aural impact and the affected area
and population, we use noise metrics that are based on outdoor
noise limits as identified by the United States Environmental
Protection Agency (EPA)[14]. EPA identified 55dB at outdoor
locations as the noise limit requisite to protect public health
and welfare. We assume the sUAS traffic operates only during
the day and compute Leq (the long term average dB level) and
the n-percent exceeded noise levels Ln for the noisy hotspots
(dB level exceeded n% of the time over a location for n =
10, 50, 90). Next, we estimate A55 (the area affected by noise
above 55dB) and P55 (the population affected by noise above
55dB). We also build the contours for the areas with high
long-term average noise exposure.

These metrics and the model we use are formally defined
in the next section. The section also describes the simulation
in detail, followed by the results presented in section IV.

III. Simulation

This section describes our setup: we recap the traffic
generation in the Cal model and give definitions of the noise
metrics used.

Fig. 1. A typical UAS flight path in the Cal model

A. Cal Model: Traffic Generation

We employ the model and approach introduced in [5]: The
airspace is a cuboidal volume LWH defined by a rectangular
area extruded to a given height H. sUAS have strictly vertical
takeoff and landing, and fly on a fixed flight level h. A
typical flight is shown in Figure 1. All aircraft are at the
same level because with the restrictions on commercial sUAS
operations[15], there is little room for multiple levels (see
also [16] for the ”horizontal-maneuvers” TCAS work for
UTM). Thus, our setup is essentially two-dimensional. We
experimented with two values of h: 50m and 75m (that is, we
ran two series of experiments: in one all UAVs flew at h=50m,
in the other all flew at 75m).

The flights’ origins and destinations were generated ran-
domly based on the population density over the rectangular
area. This preserves the actual shape of the geographical area



Fig. 2. Population Density Map. Left: the Bay Area [17]. Right: Norrköping municipality [18].

and the volume of airspace used. The total number N of
flights expected during the day was given, and the intensity
of the traffic starting or ending at a point ` of the domain
was proportional to the population density at ` (that is, the
starting times of the flights from ` form a Poisson process
with the rate proportional to the density). The simulations
were run in two regions: Bay Area in the US and Norrköping
municipality in Sweden (see Figure 2). In each of the regions,
we simulated 12 hours of traffic. For a statistically significant
sample, we used N = 5000. Below we explain how the results
for other N are obtained.

Cal model is an extension of what can be called Dutch
model, used in PhD thesis of Hoekstra [19], developed by
Jardin [20], and more recently explored within the Metropolis
project by TU Delft [21]. In this model the aircraft are
distributed uniformly in the given airspace. In the basic version
of the Dutch model, the direction of flight is also uniformly
distributed in 0...360; in [21], the different direction cones
are separated by altitude. The simplicity of the model allows
one to obtain exact formulas for conflict probabilities and
other quantities, using a single parameter tuned to match
the empirical data (in [19, p. 220] the parameter is the
probability pca of conflict in the air, estimated using real
traffic observation; in [20] the parameter pt is the ratio of the
so called “element” to the area swept by an aircraft during
the observation period).

B. Noise Calculation and Metrics Definition

Many factors influence sUAS sound level – vehicle weight
and payload, speed, wind direction, etc. For calculating long-
term average noise levels (our focus), we assume that any
drone produces the same reference noise of Lh=55dB at the
point directly under (i.e., at distance h from) the drone. That
is, the square of the sound pressure at the point is

p2
h = p2

0 · 10Lh/10 (1)

where p0 = 20µPa is the reference sound pressure [22, p. 240]
(any arbitrary value of p0 could alternatively be chosen:

h

r

Fig. 3. The intensity (and the pressure square) follows the inverse-square
laws (2) and (3).

this does not influence the results, as p0 cancels out from
formula (4)). Similarly, sound propagation depends on source
directionality, atmospheric effects, ground effects, and many
other things. A good first approximation of sound propagation
is the spherical spreading (6 dB drop in sound level per
doubling of distance from the source):

I(r) ∼ 1
h2 + r2 (2)

or

p2(r) = p2
hh

2

h2 + r2 (3)

Here I(r) is the sound intensity and p(r) is the sound pressure
at distance r from the point directly under the drone (Fig. 3).
The sound from different vehicles is assumed uncorrelated,
and the intensities are summed up (which corresponds, e.g.,
to 20dB per 100-fold increase in the number of vehicles).
The above basic model has been confirmed in personal
communication with the NASA Langley Research Center:
we checked that the numbers and graphs that we obtain in
simulations according to the above-outlined setup, agree with
the experimental measurements reported by the center at
Inter-Noise/Noise-Con 2016 [4] (Fig. 4).

We computed the following four metrics:

• Leq: long-term average noise level. At every pixel ` of the
domain, we take the average of the intensity during the



Fig. 4. The noise decay curve in our simulation has similar shape to the one measured experimentally. Left: Fly over a point under UAV path in our
model. Right: A figure from the presentation of [4] (courtesy of NASA).

simulated day and convert it to dB [23]:

Leq(`) = 10 log10
1

12hrs

∫ 12hrs

0

p2
`(t)
p2

0
dt (4)

where p`(t) is the sound pressure at ` at time t.
• Ln: the n% exceeded level (for n = 10, 50, 90) over a noisy

location. Ln is the sound level exceeded for n percent of
time. That is, we chose a pixel `, and build the graph
L`(t) of how the noise at the pixel changes with the
time. Then, for a horizontal line running at some noise
level L, we look at the total time T (L) when L`(t) > L.
The function T (L) is non-increasing: if L = 0, obviously
T (L) = 100% of time; on the other hand, if L =∞, then
T (L) = 0. For any given n, there exists the level L such
that T (L) = n% of the time – this is the level Ln.

• A55: area affected by noise above 55dB. This is the area
where Leq > 55db – it can be directly obtained from the
Leq map: every pixel ` where Leq(`) > 55dB, contributes
one pixel area to A55.

• P55: population affected by noise above 55dB. This is
similar to A55, but the area is weighted by the population
density: every pixel ` where Leq(`) > 55d, contributes
the population at ` to P55.

IV. Results

The main output from our simulations is the noise footprint:
Figure 5 shows Leq maps for our default parameters Lh =
60dB and N = 5000.

The other metrics are computed from the Leq footprint (as
described in the previous section). It is important to note that
the results for other values of the reference UAV noise Lh and
for other values of the traffic intensity N can be obtained from
the Leq maps for the default values Lh = 60dB and N = 5000
without re-running the simulations. The details follow.

Assume that Lh is changed to some new value L′h = Lh+∆L
(∆L can be larger or smaller than 0). We claim that this
simply changes the Leq value at each pixel by the difference

∆L. Indeed, by formulas (1) and (3), at any pixel ` the ratio
p′2

`

p2
0

changes from 10Lh/10 to 10L′
h/10 = 10∆L/1010Lh/10. That

is, the integrand (and hence, the integral) in formula (4) is
multiplied by 10∆L/10, implying that Leq changes by ∆L,
q.e.d. Thus, instead of rerunning the simulations, we simply
uniformly change Leq by ∆ and recompute the other metrics.
Similarly, if N is changed to N ′, the average noise Leq

changes by 10 log10
N ′

N – this is because the integrand in (4)
gets multiplied by a factor of N ′/N . Again, we change Leq

accordingly and recompute the other metrics without redoing
the simulations.

Figure 6 shows daily graphs of the noise over certain
locations; the Ln noise levels for n = 10, 50, 90 are also drawn.
The graphs are built for the default parameters Lh = 60dB
and N = 5000. As explained above, the graphs for another
reference noise L′h are just shifted by L′h − Lh. Consequently,
the Ln’s are also uniformly shifted up – this nonexciting
behavior is depicted in Figure 7, left. Also as explained above,
when N = 5000 changes to N ′, the noise is multiplied by
10 log10

N ′

N – see Figure 7, right.
Figure 8, left shows A55—the area polluted by noise above

55dB—as the function of the reference noise Lh. This time,
the dependence cannot be given by any closed-form formula.
To compute the metric, for every L′h, the noise maps (Fig. 5)
are shifted by L′h − Lh (at every pixel), and the affected
area is recalculated. Similarly, the dependence of A55 on N is
obtained by scaling the maps for every N ′ and recomputing the
metric for each scaled map. Figure 8, right shows the results.
We emphasize again that while the metrics are calculated
separately for each L′h and each N ′, the simulation is not
rerun – the new maps are simply obtained by the shifting or
the scaling.

Finally, Figure 9 shows the P55 metric – population affected
by noise above 55dB. The metric is calculated similarly to
A55.



Fig. 5. The noise footprint. Top row: Bay Area. Bottom row: Norrköping municipality. Left: h = 50m. Right: h = 75m.

Fig. 6. Noise as a function of time at a location. Left: Bay Area. Right: Norrköping municipality. The horizontal lines show L10, L50, L90

V. Conclusion and Future Work

We estimated noise footprint and associated noise pollution
metrics for UAV operations in the very low level (VLL)
airspace. We emphasize that we do not provide estimations
of annoyance from the noise. This depends on the spectral
variation of the frequency content of the noise (both observed
and perceived). Because we are not aware of any research
following Schultz [24] for UAS to measure any such psychoa-
coustic effects, we can only speculate that the dose–response
curves for UAS traffic will lie even higher than for the airplanes
(i.e., even more people will be annoyed with the same noise
level). When such curves become available, our findings can be

used to give lower bounds on traffic volumes when estimating
the airspace capacity via potential societal effects of UAS
operations.

This work continues the series of papers on capacity
estimation for UTM (which, in its turn, is a continuation
of the vast research on estimating airspace capacity in ATM
[25]–[30]). In [31], the capacity was studied in terms of the
UAVs deconfliction capabilities (the capacity limit was reached
when non-resolvable conflicts were likely to emerge). It was
observed that the transfer from conflict-free to unsafe regime
exhibits threshold properties akin to phase transition (Fig. 10):
small changes in the input parameters lead to drastic changes
in the output. This is not the case with the noise: as explained



Fig. 7. Left: L10 linearly changes with the reference noise Lh. Blue: Norrköping municipality. Red: Bay Area. Right: The dependence of L10 on
traffic intensity N is logarithmic.

Fig. 8. Top row: A55 as the function of the reference noise Lh. Bottom row: A55 as the function of the traffic intensity N . Left: Bay Area. Right:
Norrköping municipality.

above (and as confirmed by our results), when the UAV traffic
density N and/or their reference noise level Lh changes, our
noise pollution metrics change smoothly – small changes in the
input imply small changes in the output. This sharp contrast
between safety and noise as the capacity-limiting factors is
worth keeping in mind when deciding the specifics of the UTM.

Further research:

• We suggest that other models—e.g., taking obstacle
(geofences) avoidance into account—merit future investi-
gations.

• It would also be of interest to estimate other noise metrics,
such as e.g., the population affected by frequent noisy
flyovers. One might consider UAVs using different flight
levels as well, e.g., as studied in [29] for the conventional,

manned aviation.
• We did not consider LDEN (nor any other time-of-day

combinations like LDN ). The reason is twofold: first, we
assume that the drones operate during the day, and
second, we are interested in understanding the basic pic-
ture. The necessary standard adjustments for the evening
and/or night flights may be done straightforwardly.

• Last but not least, we believe that delineating the dose-
response curves for UAVs noise pollution is of ultimate
importance for assessing the societal impact of sUAS.
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