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Abstract—This paper assesses the feasibility of organizing 
unmanned aviation as free flight. We do this by estimating the 
frequency of occurrence of large de-confliction problems. 
Statistics of these frequencies are measures of air traffic 
complexity appropriate for unmanned air traffic management. 
These complexity measures increase with air traffic density. Data 
suggests as many as 100,000 unmanned flights per day is realistic 
at maturity in a region such as the San Francisco Bay Area. We 
simulate 100 to 1,000,000 flights per day. Results suggest simple 
free unmanned flight is feasible up to 10,000 flights per day, but 
needs intelligent management thereafter. We also analyze a 
hypothetical unmanned airway network. The complexity 
reductions are large and optimistic. 
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I. INTRODUCTION

We seek to understand the nature of the air traffic control 
(ATC) problem for the next phase of small-unmanned aviation. 
In the current phase, small Unmanned Aircraft Systems (UAS) 
are mostly photography accessories, which come by car to a 
site, fly below five hundred feet taking pictures, and return by 
car. Flight management becomes an arrangement between 
photographer and landowner. This phase of unmanned aerial 
commerce is underway without airways, sectors, or air traffic 
controllers. What about phase two? 

We think of the second phase as one in which the UAS 
flies itself from the premises of a service provider, to the site of 
service, and back. Such flights might be for the photography 
services of today, or for new purposes like the transport of 
small goods as contemplated by several large corporations 
[1][2]. No pilot would accompany the UAS by car or chase 
plane, making these Beyond-Line-Of-Sight (BLOS) flight 
operations as opposed to the Visual Line of Sight (VLOS) 
flights constituting the operations today. Can BLOS small-
unmanned commerce also happen without airways, sectors, or 
air traffic controllers?  

This paper approaches the question through the lens of de-
confliction. For self-organizing free flight [3], the de-
confliction of aircraft en-route must be solvable by software 
systems. In Visual Flight Rules (VFR) airspace today, simple 
right of way rules work when two pilots find themselves 
approaching each other [4]. For example, each can simply 

follow the rule to move right in a head-on conflict. However, 
these simple rules become inadequate if multiple aircraft are 
simultaneously in conflict. If one aircraft moves to the right to 
avoid a second, it might run into a third, a fourth, and so on. 
The free-flight multi-aircraft de-confliction problem has long 
been a subject of algorithmic research [5], [8]-[20]. 

Our thesis is as follows. If permitting free-flight results in 
the need to jointly de-conflict large numbers of aircraft, then 
the second phase of small-unmanned aviation cannot be free. 
We believe large de-confliction problems are difficult to solve 
in limited time and therefore hazardous in practice. Section II 
presents supporting arguments based on the mathematical 
literature and air transportation practice. Instead, the 
community must find some alternate organization of unmanned 
flight that reduces the need to jointly de-conflict large numbers 
of aircraft. Some potential ideas appear in [6] and [7].  

Our research method is to estimate the densities of flight 
for the next phase of small-unmanned aviation, and derive the 
numbers of aircraft that need to be jointly de-conflicted as a 
function of these densities. Section III discusses traffic density 
estimation, section IV defines the size of a de-confliction 
problem, and section V describes the method mapping density 
to size. We think of the statistics describing the sizes of de-
confliction problems as measures of air traffic complexity. 
These measures are ‘intrinsic’ in the sense of [7]. Size is 
defined as the number of vertices in a graph component. This 
makes it a well-understood graph theoretic concept. Section II 
argues that size also determines the computational complexity 
of de-confliction. This connects air traffic complexity to 
computational complexity by making the second a function of 
the first.  

We estimate density by analyzing unmanned aviation at a 
metropolitan scale, because BLOS flights for purposes like 
package delivery or photography occur predominantly within a 
metropolitan region. We share this idea with the Metropolis 
project [7]. They build intuition based on the Paris region. We 
use the San Francisco Bay Area. We believe as many as 
100,000 flights a day is viable at maturity for the bay area. The 
reasons are in section III. Metropolis stopped at 20,000 flights 
per day. Complexity remains reasonably stable up to 10,000 
flights per day, but grows dramatically thereafter. 
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Section VI presents de-confliction size statistics for free 
flight at different traffic densities. The results suggest small-
unmanned aviation can be free in its initial growth phase but 
needs intelligent management at maturity. This motivates us to 
understand the best reductions in de-confliction size that might 
be achieved by having the aircraft operate in airways. This is 
the subject of section VII. The best looks promising, but this 
bound will have to be tight to be useful. This requires further 
research. Section VIII summarizes the findings of the paper. 

II. LITERATURE REVIEW

We have hypothesized that if free unmanned flight results 
in de-confliction problems of large size, it cannot be free. We 
describe the theoretical and practical support for this below. 

 One part of the de-confliction literature formulates de-
confliction as optimization problems minimizing the times or 
distances expended in de-confliction, while satisfying 
minimum vehicle separation constraints [8]-[17]. They then 
describe algorithms computing optimal or sub-optimal 
solutions that are correct in the sense of maintaining the 
separation. The computational results in these papers 
sometimes de-conflict as many as seven aircraft jointly [16]. 
Computation times vary. For example, [17] de-conflicts four 
aircraft sub-optimally in half a second, and take 540 seconds 
to do so optimally. These algorithms are based on mixed 
integer programming and have complexity exponential in the 
number of aircraft in conflict, namely Conflict Size - our 
measure of air traffic complexity. This makes computational 
complexity a function of this air traffic complexity.  

Others propose a de-confliction strategy and prove it 
correct or argue both correctness and efficiency by simulation. 
We focus on the de-confliction strategies that are provably 
correct. [19] and [20] prove algorithms for n-aircraft and 
present simulations for 6 to 14 vehicles. [18] is an outlier. 
Hoffman and Tomlin [18] show the successful de-confliction 
of 200 aircraft by simulation, but prove the method correct for 
only two and three aircraft. If the community were to consider 
[18] practical and implementable, then this paper would find
free unmanned flight viable even at very high traffic densities.
The rest of the literature suggests that we consider conflict
sizes outside the range of 6 to 14 large in the context of free
unmanned flight.

Practice, in our understanding, tends to eliminate all free 
de-confliction problems involving more than three vehicles. 
Road transportation structures roads into lanes and 
intersections with stop signs or traffic lights for management, 
to ensure drivers mostly resolve conflict with only one other 
vehicle. We sometimes face a three-vehicle problem when 
merging into a highway, or when changing lanes into a gap 
and find another car trying the same. Aviation permits free 
operation in VFR airspace at very low traffic densities, but 
also structures airspace at airports into specific approach and 

descent paths, thereby imposing mostly two aircraft de-
confliction problems, if any, on the pilot. Six or fourteen 
vehicle de-confliction problems are not seen in practice. 
Requiring unmanned aircraft software systems to freely de-
conflict more than 3 aircraft would be a significant departure 
from practice. We go forward to the rest of the paper with free 
conflict sizes in excess of 3, or 6 to 14, as the two meanings of 
large. 

III. TRAFFIC DENSITY ESTIMATES

The second phase of unmanned aviation will entail BLOS 
flights from service provider to service consumer and back. 
Metropolitan regions typically hold both provider and 
consumer, making them the appropriate geographical scale for 
this analysis of unmanned aviation. For example, the UAS 
portion of goods transport is likely to be the last mile from hub 
to door, e.g., from the regional hub of the delivery company to 
the premises of the recipient. As a representative value, if 
Amazon were to deliver packages in the San Francisco Bay 
area by flying them directly from its fulfillment center to 
homes, the average flight length would be about 25 miles as 
per our computations (see Fig. 1). We focus on the San 
Francisco Bay Area to understand the future, just as the 
Metropolis project used Paris. 

The various UAS airspace proposals by the FAA, NASA, 
and private corporations envisage unmanned flight near about 
500 ft within class G airspace. Therefore we estimate current 
flight volumes in this airspace today by collecting data. On any 
given day, over bay area, there are roughly 60 helicopter flights 
and about 60 other recreational flight operations. Hence 
today’s VFR air traffic below 1200 feet is nominally 100 
flights per day. This is our lower limit traffic density.  

Figure 1.  Package delivery airways computed from Amazon Fullfilment 
Center avoiding high density popultion areas 

Industries like package delivery [1][2] give us insight into 
the upper limits of traffic density. FedEx [21] and UPS [22] 
together deliver approximately 28 million packages every day 
in the US. If ten percent of that is delivered in California and 
only ten percent of that were to be delivered by UAS, 
California would see about 280,000 UAS flights per day. Since 
about half the state economy is in Northern California, we 



postulate 140,000 flights up north. Assuming 40,000 of that 
goes north of the Bay Area (sparsely populated), we obtain 
about 100,000 unmanned flights per day for package delivery 
in the Bay Area at maturity. Other UAS use sectors may add 
more leading us to postulate the highest order of Bay Area 
unmanned flight at between 100,000 and 1,000,000. 

IV. COMPLEXITY MEASURES 
Air traffic complexity measures such as dynamic density 

[23]-[25] or MAP [26][27] used by manned aviation today are 
extrinsic. They are definable only with reference to monitors, 
sectors, or airways – concepts other than the air traffic itself. 
We seek measures that are ‘intrinsic’ in the sense of 
Vidosavljevic[7] to analyze free unmanned flight [28].  

We propose statistics of the numbers of aircraft 
simultaneously in conflict as the measures of air traffic 
complexity. Given a snapshot of airspace at any point in time, 
we derive these numbers from the pairs of aircraft in conflict, 
for which we turn to the aircraft de-confliction literature. Thus 
any choice of conflict definition bases the resulting complexity 
analyses on some component of the de-confliction literature. 
The later part of this section discusses our choice.  

Our method of analysis of complexity follows the notion of 
a Cluster discussed in [31]. Given the pairs of aircraft in 
conflict in an airspace snapshot, the snapshot is abstracted as a 
graph as shown in Figure 2. The aircraft are vertices with an 
edge between each pair of aircraft in conflict. The evolution of 
airspace is then a trajectory of graphs. Each graph component 
represents a set of aircraft to be jointly de-conflicted. The 
cardinality of this set is the number of vertices in the 
component, and also the number of aircraft to be jointly de-
conflicted. We call this number Conflict Cluster Size, 
informally shortened to Cluster Size.  

 
Figure 2.  Abstraction of a snapshot from our simulation as a graph with 

cluster sizes indicated. (Aircraft pairs in conflict is connected by a white line) 

Our computational method, which is a simulator, outputs all 
of the Conflict Cluster Sizes observed at each time step, which 
results in a size distribution at the time step. When the 
simulator is ergodic, as is ours, the distributions at each time 
step may be collapsed into one Cluster Size distribution for the 
entire simulation. The results in section VI focus on the tails of 
the distributions or the 99th percentile to emphasize the larger 
and more hazardous conflicts.  

We define a second measure called ‘Normalized Time 
Spent in Conflict (NTSC)’ for each UAS. It is a measure of the 
percentage of flight time spent in conflict with another aircraft. 
We take a mean of the individual NTSC’s of all UAS in the 
system and assign it as the system NTSC.  

 𝑁𝑇𝑆𝐶 = &'()	'+	,-+./',0	1'02	30	/)340	-+)	-02)5	678
&-03/	&53+4'0	9:530'-+	-.	02)		678

 (1) 

Our method rests on defining pairwise conflicts. The de-
confliction literature is our source. Some pairwise conflict 
definitions are simple and kinematic, with other definitions 
being information rich. In this first investigation we define two 
aircraft to be in conflict at a time instant if their relative 
distance is below a threshold. We then run simulations with 
this threshold as 50, 100, 150, 200, 250, and 300 meters. For 
example, in the 50m simulation, all pairs of aircraft within 50m 
at a particular time step are counted as being in conflict at that 
time step. This simple definition enables a good laptop to 
simulate up to 100,000 aircraft per day, while still meeting the 
investigative purposes of this paper, i.e. - to observe order 
driven shifts in free air traffic complexity as we go from the 
102 flights characterizing today, to the 105 flights at maturity. 

Intuitively and as our results in section VI show, air traffic 
complexity should increase monotonically with the conflict 
threshold. Therefore, the 50m simulations produce the slowest 
complexity growth curve and the 300m simulation the fastest. 
The FAA permits small UAS to have speeds up to 45 m/s (100 
mph) [30]. Most conflict definitions in the literature posit a 
space around an aircraft that cannot be violated by any other 
aircraft (for example the avoid set in [18]). We believe most of 
these definitions would find separations less than 50m to be 
unacceptable for aircraft at 45 m/s (1 second separation). 
Therefore, we present our 50m complexity curve as the one 
saying that reality will grow at least as fast. 

On the other hand, most conflict models, would rarely 
consider two aircraft separated by 300m (over 6 second 
separation) to be in conflict. They would rely on shared 
information about intent [29], which would eliminate conflict 
between most aircraft at 300m based on relative heading. 
However, the worst-case is represented by the absence of intent 
information, in which case one aircraft is required to assume 
that the other might turn on a dime and head straight over at 
maximum speed. If two UAS fly at each other at 45 m/s and 
decelerate at 1g, they each require 100 meters to stop. We add 
the 50m unacceptable airspace violation to this and arrive at 
250 meters. Therefore, we interpret our 300m complexity 
curve as the one saying reality will grow no faster. Future 
analyses based on richer conflict definitions would be expected 
to show complexity growth between the 50m and 300m curves. 

V. SIMULATION 
We built a Matlab simulation engine to estimate the 

Cluster Sizes and NTSC for an input traffic density. It has the 
following three components – 
1. Parameter declaration and flight generation. 



2. NTSC estimation.  
3. Cluster Size estimation. 
We first compute the conflict intervals for each UAS. Based 
on these intervals, the NTSCs are computed for each UAS and 
then used to compute the system NTSC. Then the flights are 
simulated. Flights enter the simulation at their start time, 
follow their trajectory and exit at the end of the flight. Cluster 
sizes are computed at each instant of time in the simulation. 
We simulate 5 days. The components of the simulator are 
explained in the next three sub-sections. 

A. Parameter Declaration and Flight Generation 

We model airspace as a cuboidal volume LWH defined by 
a rectangular area LW (L is length and W is width) extruded 
to a height H. UAS flights are generated in this area. Each 
flight is a quadruple (o, d, h, t) where o is the origin, d is the 
destination, h is the height at which the UAS travels from 
origin to destination and t is the flight start time. The UAS 
travels on the shortest path (essentially a straight line) and is 
considered to be in transit as it travels from origin to 
destination. A typical UAS flight is shown in Fig. 3. 

The origins and destinations are generated based on a 
population distribution (Fig. 4) over the rectangular area. 
Since a geographical area is estimated as a rectangle, the 
population distribution preserves the actual shape of the 
metropolitan area and the volume of airspace used. The flights 
are modeled as Poisson processes and assigned start times 
consistent with exponentially distributed inter-arrival times. 

 
Figure 3.  A typical UAS flight 

Since we seek to understand free-flight complexity growth 
as function of growth in the order of traffic, we choose a 
simple flight model so as to simulate at scale. First, we 
assume vertical take off and landing, i.e. a UAS rises to height 
h at its origin, travels at the same height to its destination d 
and then descends. This excludes some unmanned aircraft like 
the fixed wings. FAA restricts UAS flights to below 500 feet 
limiting the flexibility of vertical separation. Hence, to 
measure the effects at the densities we chose, we assume all 
flight transit at the same altitude. Flights occur at uniform 
speed in the simulation. Flights are assumed to happen only 
for a twelve-hour period from 8a to 8p every day and 

uniformly distributed over the entire period with no peak UAS 
traffic times. Finally to distribute flights over the bay area, we 
follow a population density distribution shown in Fig. 4. 

 
Figure 4.   Population density map of the bay area  

(Source: ArcGIS USA Population Density Demographics) 

Definitions and values used for the input parameters, 
required for flight generation and simulation, are listed below.  

λ  - flight rate (number of flights per day)  
[varied from 100 to 1,000,000]  

W  - width of the rectangular area [103700 km] 
α  - ratio of length to width of rectangular area [1290/700] 
s  - uniform speed of UAS flights [20m/s] 
tol  - tolerance, conflict distance threshold 

[50m, 100m, 150m, 200m, 250m, 300m] 

Width W is used to normalize all distance measures and 
make them dimensionless.  

B. NTSC Estimation 
Conflict intervals for each UAS are computed first. Every 

flight transits on a straight-line path from origin to destination. 
So the intersection of a pair of two flights can be computed 
analytically. Relevant quantities are defined as follows – 

t  – simulation time 
Tstart  – simulation time instant at which the two flights begin 

to co-exist in simulator at the transit altitude 
Tend  – simulation time instant at which the two flights stop 

co-existing at the transit altitude 
T  – time measured from Tstart  
Ti  – ith solution for time of conflict 
pi  – position vector of ith  UAS at time T 
pi0  – initial-position of ith  UAS at the start of the co-existing 

period  
vi  – velocity vector of ith  UAS 
δ  – conflict distance or tolerance 
pr  – relative position of second UAS w.r.t. first 
pr0  – relative initial position of second UAS w.r.t. first 
vr  – relative velocity of second UAS w.r.t. first 

The following equations describe the position vectors and the 
computation of the relative displacement. 



 𝑝< = 	𝑝<= + 𝑣<𝑇  (2)  
 𝑝@ = 	𝑝@= + 𝑣@𝑇 (3) 
 𝑝@ − 𝑝< = 	𝑝@= − 𝑝<= + (𝑣@ − 𝑣<)𝑇 (4) 
 𝑝5 = 𝑝5= + 𝑣5𝑇 (5) 
Conflict happens if relative distance is within conflict distance. 
 𝑝5 ≤ δ (7) 
 𝑝5 @ ≤ δ@ (8) 
or, 𝑣5 @𝑇@ + 2(𝑝5= ∙ 𝑣5)𝑇 + 𝑝5= @ − δ@ 	≤ 0 (9) 

Considering the equality condition, this is a quadratic equation 
with two solutions for the actual simulation time. 

𝑇< = 𝑇IJKLJ +
−(𝑝5= ∙ 𝑣5) − 	 (𝑝5= ∙ 𝑣5)@ − 𝑣5 @ 𝑝5= @ + 𝑣5 @δ@

𝑣5 @  

𝑇@ = 𝑇IJKLJ +
−(𝑝5= ∙ 𝑣5) + 	 (𝑝5= ∙ 𝑣5)@ − 𝑣5 @ 𝑝5= @ + 𝑣5 @δ@

𝑣5 @  

The following two conditions must be satisfied for a real 
solution.  
1. 𝑣5 @ 	≠ 0     
2. (𝑝5= ∙ 𝑣5)@ − 𝑣5 @ 𝑝5= @ + 𝑣5 @δ@ 	≥ 0  

Uniform speed implies condition 1 is violated when the flights 
are parallel. Condition 2 is violated when the flights are 
antiparallel (parallel but traveling in opposite directions) and 
the two paths are at a distance greater than the conflict 
distance. The above solutions work for all other conditions. 
However, they are for intersection of lines extending in both 
directions infinitely. The actual paths are only line segments. 
The solutions may therefore not produce the actual conflict 
intervals directly. The correct interval (Tint1, Tint2) in terms of 
the actual simulation time is computed as per Table 1. 

TABLE 1. COMPUTING CORRECT CONFLICT INTERVAL 

We implement the exact analytical solutions and check all 
the conditions above. The computed conflict intervals are 
hence accurate. The only case ignored here is when two flights 
are parallel and within the conflict distance. We check for such 
flight pairs and calculate the conflict interval as the time period 
for which the two flights co-exist in the simulator. Finally, for 
each UAS, the total time spent in conflict with at least one 
other UAS is calculated as a union of all pairwise intervals. 

C. Cluster Size Estimation 
For each UAS, we store both the flight identification 

number of the other conflicting UAS in a pair and the conflict 
interval computed with it. While simulating the propagation of 
all UAS, at each instant, the simulator iterates through all 
conflicting UAS at that instant and computes a list of all 
clusters sizes produced.  

VI. RESULTS 
Our simulation data spans traffic densities varying from 

100 to 100,000 flights per day for six conflict distance 
thresholds varying from 50m to 300m. Fig. 5 and 6 visualize 
the paradigm shift in complexity, as the traffic density 
increases by two orders of magnitude. Conflicting aircraft are 
marked red while the others are marked green. The arrows 
show the flight direction of the UAS.  There is a dramatic rise 
in the number of conflicting UAS as large clusters begin to 
appear over densely populated areas, primarily over San 
Francisco city. In contrast, Fig. 5 drawn from a 1,000 flights 
per day simulation, shows only one conflict in the entire 
region. Both the figures are drawn from 300m simulations.  

 
Figure 5.  Zoomed perspective snapshot of conflicts at 1000 flights per day 

 

Figure 6.  Zoomed perspective snapshot of conflicts at 100000 flights per day 

The figures and tables in the rest of this section quantify the 
growth in complexity. We start by plotting the Normalized 
Time Spent in Conflict versus traffic density for the six conflict 
distance thresholds (Fig. 7). The NTSC lies between 0 and 1 
due to normalization. Therefore, we expect this plot to look 
like an S-curve, flat at low and high traffic densities, while 
rising in some linear or non-linear fashion in between.  

We simulated up to 10 million flights a day for the 300m 
conflict distance threshold to confirm this intuition (the fastest 
growing line in Fig. 7). As hypothesized in section IV, the 
complexity growth curves for the 50m and 300m conflict 
distance thresholds represent the slowest and fastest 
complexity growth. Real complexity growth should lie within 
these bounds based on the arguments in section IV. We did not 

Conditions Tint1 Tint2 
T2 ≤ Tstart or T1 ≥ Tend No Conflict 
T1 ≤ Tstart & T2 ≥ Tend Tstart Tend 

T1 ≤ Tstart & Tstart < T2 < Tend Tstart T2 
Tstart < T1 < Tend & T2 ≥ Tend T1 Tend 

Tstart < T1 < Tend & Tstart < T2 < Tend T1 T2 
 



simulate beyond 1 million flights per day for the other cases 
because the analyses in section III suggest UAS traffic will 
stay below that level even at maturity.  

 
Figure 7.  Growth of conflict coefficient with increasing flight rate and 

varying conflict distance 

The NTSC complexity growth curves show transitions in 
the rate of complexity growth with air traffic density. Growth 
remains almost flat up to 1000 flights per day, and reasonably 
so even up to 10,000 flights per day. This already permits 
significant unmanned aviation growth with small change in 
complexity. However, there is a shift in the complexity growth 
between 10,000 and 100,000 flights per day, except in the 
slowest growth case (the 50m curve in Fig. 7). In this regime, 
complexity becomes sensitive to the volume of traffic. We 
believe high sensitivity means that beyond 10,000 flights per 
day, the system has to be designed to tolerate the complexity of 
the next order (100,000). There is a significant difference in 
NTSC between the best and worst cases at 100,000 flights. A 
UAS is expected to spend almost 45% of its transit time in 
close vicinity to another in the worst case and 2% in the best.  

Next, we analyze the effect of traffic densities on conflict 
cluster sizes as defined in section IV. Fig. 8 shows the cluster 
size distributions. The three figures represent 1000, 10,000, 
and 100,000 flights per day respectively. Each figure has six 
curves, one for each conflict distance threshold. The horizontal 
axes are the cluster sizes and the vertical axes the number of 
occurrences of each size in our simulation dataset. The number 
of occurrences has a log scale to magnify the cluster sizes 
beyond the 99th percentile. The horizontal axis on the 1000 
flight plot runs up to 3 because no greater conflict cluster is 
observed in our entire simulation dataset. In contrast, the axis 
for 100,000 flights runs up to conflict clusters with 100 aircraft 
needing to be jointly de-conflicted. The figures have no value 
for the cluster size 1 because an aircraft without conflict is 
given a size of 0. The next conflict size is 2, representing two 
aircraft in conflict. The three figures summarize our entire 
cluster size dataset. 

Table 2 records the 99th percentile cluster size and the 
largest cluster size in each scenario. When the flight volume 
reaches 100,000 per day, the 99th percentile cluster size is 13 in 
the fastest complexity growth case (300m), but 2 in the slowest 
growth case (50m). Conflicts of size 2 are part of the daily 
business of free flight, while 13 would be outside the realm of 

possibility by most of the criteria in section II. The largest 
conflict clusters observed vary from 4 in best case, arguably 
negotiable by free unmanned flight, to 96 in worst-case, which 
would be a disaster. At 100m the largest conflict cluster is 
already 9 in 5 days of simulation. We read the shift from 4 to 9 
as one goes from 50m to 100m at 100,000 flights, as signaling 
the infeasibility of simplest form of free unmanned flight 
(straight from origin to destination) at maturity. This case is 
worthy of further analysis with a richer conflict definition. We 
read the rest of table 2 as signaling the feasibility of free flight 
up to 10,000 flights per day.  

 
Figure 8.  Cluster size distribution for varying flight densities and conflict 

distances  

TABLE 2. CLUSTER SIZE DISTRIBUTION DATA  

 (99th Percentile, Largest) Cluster Size 

Flight Rate 
(per day) 50m 100m 150m 200m 250m 300m 

100 (0, 0) (0, 0) (0, 0) (0, 2) (0, 2) (0, 2) 

1000 (0, 2) (0, 3) (0, 2) (0, 2) (0, 3) (2, 3) 

10000 (0, 3) (0, 4) (2, 4) (2, 4) (2, 5) (2, 6) 

100000 (2, 4) (2, 9) (3, 13) (4, 37) (7, 60) (13, 96) 

Fig. 9 is our clearest representation of transitions in air 
traffic complexity with the growth of unmanned air traffic. The 



conflict distance threshold is 300m. It shows three stages of 
traffic growth. Below 100 flights per day, the 99th percentile is 
zero, meaning conflicts are statistically insignificant. From 500 
to 10,000 flights per day, the statistically significant conflicts 
are between two aircraft even in the worst-case (300m). 
Finally, there is a very high-complexity regime beyond the 
10,000 flights. The Metropolis analyses [7] suggest our 
intermediate 10,000 flight complexity regime should persist up 
to 20,000 flights. Fig. 9 looks consistent with their finding. The 
steep slope of the complexity curve, thereafter suggests the 
unmanned air traffic management architecture may have to 
move out of pure free flight near 10,000 flights per day. 

 
Figure 9.  99th percentile cluster sizes at 300m conflict distance 

VII. A SIMPLE AIRWAY COMPLEXITY ANALYSIS 
We assumed a very simple airway network with a grid 

structure over the bay area. Every UAS flies to the nearest 
airway, follows it till the closest airway to its destination and 
then exits. While in the airway, the UAS are not in simple free 
flight any more but managed and controlled with new and 
emerging designs [6][7].  

We apply our conflict criterion to the UAS outside the 
airways but not inside. The conflict paradigm inside is a new 
one to be modeled in new ways. Therefore we assign zero 
conflict to the aircraft inside the airways even though they 
would be packed at very high densities. Consequently, the 
results in this section can only be understood as a best 
possible reduction in complexity that might be achieved by 
imposing airways. Some conflict complexity should be added 
for the in-airway flight path for realism.  

We simulate the airways at 100,000 flights per day. The 
conflict distance threshold is 300m. Fig. 10 shows a zoomed 
snapshot of the simulation. Unlike the free-flight case, most 
conflicts here are between parallel trajectories outside the 
airway within the conflict distance threshold. Conflicts due to 
intersecting flights are much lower. We observe a reduction in 
NTSC from 45% for free flight to 5% in this airway analysis. 
If we ignore the parallel flights by assuming shared heading 
information, the NTSC reduces further to 0.06%. The 99th 
percentile cluster size drops to 3 from 13 for free flight. The 
largest cluster observed is of size 10, down from 96 for free 
flight. 

 
Figure 10.  Snapshot of simulation with 100,000 flights directed through 

airways. Pink denotes UAS that are withinn 300m but on parallel trajectories. 

VIII. CONCLUSIONS  
Our aim has been to assess the feasibility of organizing 

unmanned aviation as free flight. Methodologically, we have 
done this by estimating the frequency of occurrence of large 
de-confliction problems and statistics therefrom. “Large” is 
based on the de-confliction literature and practice. The 
frequencies of occurrence are increasing functions of traffic 
density.  

We collected data about low altitude flights in the San 
Francisco Bay Area to find the lower range of density, and 
analyzed the package delivery industry to obtain an upper 
range in excess of 100,000 flights per day. Our analyses have 
also led to a focus on metropolitan regions as the most 
appropriate scale for the study of the next phase of unmanned 
aviation. Hence we have derived our results by simulating a 
metropolitan region from 100 to 1,000,000 flights per day. 
The simulator considers the regional airspace a cuboidal 
volume with its actual shape emerging from its population 
density distribution. Simulation parameters have been picked 
to approximate the San Francisco Bay Area. 

We have argued that the frequencies of occurrence of large 
de-confliction problems and statistics therefrom, are 
appropriate measures of air traffic complexity. Manned air 
traffic control complexity measures inform manned controller 
workload. Unmanned air traffic control complexity measures 
should inform the complexity imposed on software systems. 
Computational complexity is amongst the most widely 
understood measures for software. The number of aircraft to 
be jointly de-conflicted is a determinant of computational 
complexity in the de-confliction literature. Choosing this 
number as an air traffic complexity measure, makes 
computational complexity a function of air traffic complexity.  

The simulation data shows the simplest form of unmanned 
free flight (straight from origin to destination) to be feasible 
up to 10000 flights a day even with the fastest complexity 
growth estimated by us. The largest de-confliction problems 
observed involve 6 aircraft, but the 99th percentile is 2. 
However, at 100,000 flights a day, simple free flight begins to 



break down. It seems to work in the slowest complexity 
growth scenario (50m), but breaks down even in the next 
growth scenario (100m) with 9 aircraft simultaneously in 
conflict in 5 days of simulation. This case merits further 
analysis with higher fidelity de-confliction models. 

We also look at the Nominal Time Spent in Conflict as a 
complexity measure. It generates an S-curve as a function of 
traffic density. NTSC remains low up to about 10,000 flights 
per day, and then takes off in all but the slowest growth 
scenario. This is consistent with the Conflict Cluster Sizes. 
The cluster sizes reveal three complexity growth regimes – a 
zero conflict regime up to about 500 flights per day a two 
aircraft conflict regime from 500 to 10,000 flights per day, 
and a very high complexity growth regime thereafter. The 
intermediate traffic range is the feasible free flight range. 

We applied our method to airways but assumed aircraft 
inside the airways are not in conflict even when densely 
packed. We only assume conflict in the free-flight regime 
outside the airways. The 99th percentile conflict size then 
drops to 2. Moreover most of these conflicts are between 
aircraft flying parallel trajectories, which means they could be 
eliminated by sharing intent. Further research into control 
designs for de-confliction inside airways such as [6] is 
suggested. 

We have evaluated the simplest form of free flight where a 
UAS flies straight from origin to destination.  Incorporating 
minimal en-route deviations may prevent large de-confliction 
problems and merits future investigation. Approaches such as 
the distributed decision making concepts developed by Green 
and Bilimoria [32] for manned free flight, need to be explored 
to enable such congestion sensitive unmanned free flight.    
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