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Abstract—This paper introduces dynamic surface control (DSC)
techniques to formulate concise sliding mode controllers to control
the horizontal position of an underactuated quadrotor. Sliding
mode control is a popular type of robust nonlinear control method.
However, traditional methods on handling underactuated model
such as integrator backstepping and dynamic input augmentation
could lead to the explosion of terms when time derivatives are
taken in controller designs. It makes sliding mode controllers only
feasible for highly simplified dynamic models. We solve the term
explosion problem by introducing DSC filters in synthetic controls,
so that a full quadrotor model can be used for horizontal controller
designs.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming increasing
capable on performing autonomous tasks due to the recent
advance in sensor technologies. Among various types of UAVs,
quadrotors are popular because they are capable of vertical
take-off and landing. In addition, quadrotors have hovering
capability and omni-directional maneuverability, which enable
them to perform tasks such as filming, structural health moni-
toring, and package delivery.

However, to control a quadrotor, especially in horizontal
motions, is non-trivial due to its nonlinear and underactuated
nature. Moreover, model uncertainties in payloads and wind
make the control even more challenging. To handle the uncer-
tainties, we could use either robust or adaptive control methods.
However, there are no concise solutions to the underactuation
issue in the control literature. In this paper, we propose a control
scheme which combines sliding mode controllers with dynamic
surface control (DSC) techniques, to enable robust horizontal
position control of a full quadrotor model. This technique also
combines well with feedback linearization (FB), but it is not
robust to uncertainty and thus not presented.

II. LITERATURE REVIEW

The quadrotor control literature can be divided into two
classes. The first class focuses on attitude and altitude stabi-
lization [1]–[5], while the second class controls the horizontal
position as well [6]–[8]. Controlling the first class is straight
forward because attitude and altitude are directly controlled by
four independent control inputs. However, when horizontal po-
sition tracking is required, the problem becomes more difficult
due to the underactuated nature of quadrotors. In this section,

we review both classes of control methods and lead to our
contribution.

Attitude and altitude stabilization of a quadrotor could be
achieved by many approaches. Classical methods were ex-
amined in several papers. In [1], a PID controller and a LQ
controller were compared. The PID controller neglected gyro-
scopic effects but were able to stabilize the system with minor
disturbances. The LQ controller gave average performance
because the linearized reference model was imperfect. In [2], Li
presented another experiment to confirm the feasibility of PID
designs. Nonlinear control methods were also widely experi-
mented. In [4], a backstepping and a sliding mode controllers
were compared. The backstepping controller gives more robust
performance. In [5], an adaptive sliding mode controller was
presented. Simulation results indicated that the controller was
robust to model uncertainty in mass and rotational inertia.

However, the feasible control methods reduce dramatically
when horizontal position tracking is required. The challenge
is on resolving the underactuation issue, or using only four
independent actuation inputs to handle all six degrees of
freedom. Specifically, the tilting in roll and pitch are coupled
with horizontal motions. To derive feasible horizontal control
laws, the dynamic model is usually greatly simplified [6], [7]
to avoid the explosion of terms when taking time derivatives.

In [7], Xu divided the model into two subsystems. The
fully actuated system were handled by PID controllers. The
underactuated system with horizontal motions was stabilized
to a fixed point by a sliding mode controller. However, it
was unable to track a moving trajectory because it lacked
the time derivatives of the desired roll and pitch. In [6], Lee
tried both feedback linearization and adaptive sliding mode to
fully control a quadrotor. In feedback linearization, the system
was reduced to include only thrust forces and gravity, and
yet the derived control laws were quite lengthy. In addition,
it augmented the state-space model with control inputs as
additional states, yielding complicated dynamical input control
laws. In the sliding mode controller, the horizontal position
were controlled by two PD controllers, instead. In [8], another
similar feedback linearization method with dynamic inputs
was presented. Compared to [6], the model in [8] was more
complete, and the term explosion problem became huge! In
summary, it is practically impossible to derive concise control
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laws from a full quadrotor model by directly applying nonlinear
control methods.

In this paper, we augment the quadrotor model with two first-
order filters from the dynamic surface control (DSC) literature
[9]. With the DSC filters, we were able to access lagged version
of the required time derivatives and indirectly formulate concise
control laws, to fully control a quadrotor, including horizontal
positions.

III. DYNAMIC MODEL

The dynamic model of a quadrotor is similar to a typical
airplane with a different set of forces. Here we use Euler angles
instead of quaternion, to express the control laws derived later.
One limitation of using Euler angles is that there is a singularity
at θ = 90◦. Define a fixed north-east-down (NED) inertial
world frameW and a non-inertial body frame B attached to the
center of gravity of the quadrotor (Figure 1). The following is
a list of variables used to describe the dynamics of a quadrotor.

• X = [X Y Z]T : quadrotor position in W;
• x = [x y z]T : quadrotor position in B;
• V = [VX VY VZ ]T : quadrotor velocity in W;
• Θ = [φ θ ψ]T : Euler angles roll, pitch, and yaw in B,

respectively;
• ω = [ωx ωy ωz]

T : quadrotor angular velocity in B;
• m: quadrotor mass;
• I = diag(Ix, Iy, Iz): mass moment of inertia in B;
• ωri : motor speeds, i = 1, 2, 3, 4;
• Ω = −ωr1 + ωr2 − ωr3 + ωr4 : sum of motor speeds;
• kf , km: motor thrust and torque coefficients, respectively;
• ct, cr: translational and rotational drag coefficients, respec-

tively;
• l: moment arm from the origin of B to each motor.
• g: gravitational acceleration, [0 0 g]T in NED frame with
g = 9.81m/s2.

Fig. 1: The reference frames of a quadrotor.

Assume that the motor forces are proportional to motor speed
squared ω2

ri , and the control inputs U satisfy equation (1)
with constraints. Physically, the control inputs U1, U2l, U3l, U4

represent the total thrust and the total motor torques along the
roll, pitch, and yaw axes, respectively. These are the control
inputs for altitude and Euler angles. The constraints in (1)
represent the physical capacity of the motors.

U =


U1

U2

U3

U4

 =


kf kf kf kf
0 kf 0 −kf
kf 0 −kf 0
km −km km −km



ω2
r1
ω2
r2
ω2
r3
ω2
r4


4kfω

2
r,min < U1 ≤ 4kfω

2
r,max

−kfω2
r,max ≤ U2 ≤ kfω2

r,max

−kfω2
r,max ≤ U3 ≤ kfω2

r,max

−2kmω
2
r,max ≤ U4 ≤ 2kmω

2
r,max

(1)

Other forces include gravity mg, translation drag ctV ,
rotational drag crω2, and Coriolis forces from quadrotor body
rotation and motor rotations. The state-space model could be
written compactly as equation (2).

Ẋ = V

Θ̇ = R−1v ω

V̇ = g +
1

m

−ctV −RB→W

 0

0

U1


ω̇ = I−1

ω × (Iω) − ω ×

Ir
0

0

Ω

− crω
2 +

U2l

U3l

U4


(2)

In (2), RB→W is the rotation matrix from frame B to W ,
and Rv is a linear transformation from Θ̇ to ω. Use small case
s and c to respresent sin and cos functions, respectively, then
the matrices are given by

RB→W =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


Rv =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ


We only gives a brief summary of the model to introduce

enough notations for controller derivations. For details, refer
to an equivalent dynamic model in [5]. The expanded version
of (2) is given by equation (17) at the end of the paper for
derivation reference.

IV. POSITION CONTROLLERS

Given the quadrotor model in Section III, we can follow the
standard procedure of designing sliding mode controllers, and
formulate four independent control laws governing the altitude
and attitudes (Euler angles) [5]. However, to achieve horizontal
position control, we need to derive the desired roll (φd) and
pitch (θd) as intermediate bridges. On one hand, they serve as
synthetic control inputs for horizontal motions in X and Y .
On the other hand, they are also the reference signals for the
actual roll (φ) and pitch (θ). As is mentioned before, traditional
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methods such as backstepping and state augmentation lead to
explosion of terms. To avoid that, we apply dynamic surface
control (DSC) techniques in the horizontal position controllers.

First, we define the tracking errors. We use the subscript d
to represent the desired value of any variable.

eX
4
= X −Xd eθ

4
= θ − θd

eY
4
= Y − Yd eφ

4
= φ− φd

eZ
4
= Z − Zd eψ

4
= ψ − ψd

Note that to achieve position control, we can specify the
desired position (Xd, Yd, Zd) and desired yaw (ψd). However,
we cannot arbitrarily specify the desired pitch (θd) and roll (φd)
because they are coupled with the horizontal motions (Xd, Yd).

Define the sliding surfaces to be some first-order filters of
the error terms (3) with tuning parameters λ′s [10]. Note that
the first terms in Sφ and Sθ are different from the rest.

SX
4
= ėX + λXeX Sθ

4
= θ̇ + λθeθ

SY
4
= ėY + λY eY Sφ

4
= φ̇+ λφeφ

SZ
4
= ėZ + λZeZ Sψ

4
= ėψ + λψeψ

(3)

The asymptotic stability proof of a general sliding mode
controller is based on Lyapunov’s second method. Define a
general sliding surface S in a form similar to (3). First, we
compute Ṡ, or the time derivative of S, and set it equal to
−ηsgn(S). Let the positive definite Lyapunov function be
V = 1

2S
2, then V̇ = SṠ ≤ −η|S| is negative definite, which

guarantees S → 0 asymptotically. Once we are on S = 0, the
tracking error goes to zero exponentially [11]. Here, we simply
use the design method without proofs.

A. Vertical and Yaw Controllers

The sliding mode controllers for altitude and yaw are
straight-forward. Take the first time derivatives of the corre-
sponding sliding surfaces in (3), and set them equal to the
robustness terms with parameters ηZ and ηψ , we have

ṠZ = (V̇Z − Ẍd) + λZ ėZ
4
= −ηZsgnSZ

Ṡψ ≈ (ω̇z − ψ̈d) + λψ ėψ
4
= −ηψsgnSψ

(4)

In (4), we approximate ψ̈ to be ω̇z . Substitute V̇Z and ω̇z
from (17) into (4), we get the vertical and yaw control laws in
(5).

U1 =
m

cφcθ

[(
−g +

ct
m
VZ + Z̈d

)
− λZ ėZ − ηZsgnSZ

]
U4 = Iz

[(
−Ix − Iy

Iz
ωxωy +

cr
Iz
ω2
z + ψ̈d

)
− λψ ėψ − ηψsgnSψ

]
(5)

B. Horizontal Controllers

In this section, we derive the horizontal control laws by
augmenting our system with DSC filters. The overall horizontal
motion control architecture is shown in Figure 2. It is a 3-step
process. First, we derive the synthetic controls θ̄ and φ̄ required
to track Xd and Yd via sliding mode. At this point, if we use
U3 and U2 to control θ̄ and φ̄ directly, we will have to take
time derivatives of θ̄ and φ̄ and lead to the explosion of terms.
Instead, we convert θ̄ and φ̄ into θd and φd, respectively, using
DSC filters. The derivatives of θd and φd are implicitly given by
the filter updates and thus resolved the term explosion problem.
Finally, we can use control inputs U3 and U2 to drive θ and φ
to θd and φd, respectively, via sliding mode. In the following,
we show the design process in details.

Fig. 2: The horizontal motion control architecture.

1) derive synthetic inputs θ̄ and φ̄ via sliding mode: First,
take the time derivative of the sliding surfaces SX and SY in
(3) and set them equal to the robustness terms with parameters
ηX and ηY , respectively.

ṠX = (V̇X − Ẍd) + λX ėX
4
= −ηXsgnSX

ṠY = (V̇Y − Ÿd) + λY ėY
4
= −ηY sgnSY

(6)

Substitute V̇X and V̇Y from (17) into (6) and simplify, we
have

R(ψ)

[
cφsθ

sφ

]
=

[ m
U1

((
ct
mVX + Ẍd

)
− λX ėX − ηXsgnSX

)
m
U1

((
ct
mVY + Ÿd

)
− λY ėY − ηY sgnSY

) ]
(7)

where the matrix R(ψ) is

R(ψ)
4
=

[
cψ sψ
sψ −cψ

]
Note that the roll φ and pitch θ on the left-hand side of

equation (7) actually represent the synthetic controls for the
desired horizontal motions. We denote these two synthetic
controls as θ̄ and φ̄ to distinguish them from the actual pitch
θ and roll φ. We can further simplify (7) with small angle
approximations: cφsθ ≈ θ and sφ ≈ φ, yielding sliding mode
control laws (8).

[
θ̄
φ̄

]
= R(ψ)

 m
U1

((
ct
mVX + Ẍd

)
− λX ėX − ηXsgnSX

)
m
U1

((
ct
mVY + Ÿd

)
− λY ėY − ηY sgnSY

) 
(8)
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2) augment system with DSC filters: To proceed, we need to
somehow use equation (8) in the time derivative of Sθ and Sφ,
so that the controls U3 and U2 can appear. However, as was
mentioned in Section II, it requires taking time derivatives of
(8), which leads to explosion of terms. To avoid that, we instead
augment the dynamic system (2) with two first-order DSC
filters shown in (9), to indirectly converge the desired pitch
θd and roll φd to the synthetic controls θ̄ and φ̄, respectively
[9]. The time constants τθ and τφ determine the convergence
rates. The initial conditions are set to zeros in both filters.

τθ θ̇d + θd = θ̄, θd(0) = 0

τφφ̇d + φd = φ̄, φd(0) = 0
(9)

The DSC filters (9) allows us to compute θ̇d and φ̇d required
in Ṡθ and Ṡφ, without taking time derivatives of θ̄ and roll φ̄.
Therefore, no simplifications in the dynamics are needed to
accommodate the explosion of terms. A semi-global stability
proof via Lyapunov analysis is lengthy because it involves the
error dynamics (θ̇d − ˙̄θ) and (φ̇d − ˙̄φ), which again involve
explosion of terms. A standard proof is provided in [9]. Here,
we simply adopt the results.

3) derive control inputs U3 and U2 via sliding mode: Now
we can take the time derivatives of Sθ and Sφ, and set them
equal to their robustness terms with parameters ηθ and ηφ,
respectively, with θ̈ ≈ ω̇y and φ̈ ≈ ω̇x.

Ṡθ ≈ ω̇y + λθ(θ̇ − θ̇d)
4
= −ηθsgnSθ

Ṡφ ≈ ω̇x + λφ(φ̇− φ̇d)
4
= −ηφsgnSφ

(10)

In equation (10), ω̇y and ω̇x include the control inputs U3

and U2. They (ω̇y and ω̇x), as well as θ̇ and φ̇, are given by
(17), and θ̇d and φ̇d are given by re-expressing the DSC filters
as (11).

θ̇d =
1

τθ

(
θ̄ − θd

)
φ̇d =

1

τφ

(
φ̄− φd

) (11)

In equation (11), θ̄ and φ̄ are given by (8), and θd and φd
are given by the DSC filter updates in (9). Then, the horizontal
control laws are given by

U3 =
Iy

l

[(
−
Iz − Ix

Iy
ωxωz +

cr

Iy
ω2
y +

Ir

Iy
Ωωx

)
− λθ ėθ − ηθsgnSθ

]
U2 =

Ix

l

[(
−
Iy − Iz

Ix
ωyωz +

cr

Ix
ω2
x +

Ir

Ix
Ωωy

)
− λφėφ − ηφsgnSφ

]
(12)

Note that the terms in (5), (8) and (12) could be catego-
rized into three parts. Take U1 as an example. The first part(
−g + ct

mVZ + Z̈d

)
cancels the original (possibly nonlinear)

dynamics; the second part (−λZ ėZ) is the desired linear dy-
namics; the third part (−ηZsgnSZ) is an uncertainty robustness
term.

Lastly, the signum function (sgn(·)) should be replaced by
a smoothed function to avoid chattering. In this paper, we use
a function with logistic and linear smoothing (13).

ηsgn(S)←
[
η1

(
2

1 + e−cS
− 1

)
+ η2S

]
(13)

Other than small angle approximations, we did not make
any simplification to the full dynamic model (2) throughout
the derivations. The innovation lies in the adoption of DSC
filters.

V. SIMULATIONS

In this section, we present the simulation results of the
sliding mode controllers. First, we examine the behavior of the
sliding mode controllers with DSC filters defined in equation
(9). Second, the robustness of the sliding mode controllers is
evaluated with respect to disturbance, model uncertainty, and
measurement noise. All simulations are performed in MAT-
LAB/SIMULINK R2015a [12] with a fixed-time-step solver
dt = 0.002sec.

The quadrotor parameters are referenced from [13] with a
different rotational inertia matrix, so that the model is more
realistic.

m = 2.0 kg

km = 10−6 Nm · s2

ct = 10−2 Ns/m

l = 0.2m

g = [0 0 9.81]
T
m/s2

kf = 10−5 N · s2

cr = 10−2 Nm · s2

I = 1.2416 diag([1 1 2]e-2) kg m2

(14)
The reference trajectories in altitude, yaw, and horizontal po-

sitions are either sinusoids or zeros. The sinusoidal references
are taken from [14] in equation (15). The exponential terms are
introduced to produce smooth initial references.

Xd(t) = (1− e−t
3

)sint m

Yd(t) = (1− e−t
3

)cost m

Zd(t) = −(1− e−t
3

) m

ψd(t) = 30(1− e−t
3

)sint ◦

(15)

The controller gains are listed below in (16). There are two
sets of η′s as defined in (13) for each of the six control laws
(5), (8), and (12). The two time constants τφ and τθ are chosen
to minimize filter lags while preserving system stability.

η1X = 3 η1Y = 3 η1Z = 4
η1φ = 20 η1θ = 20 η1ψ = 10
η2X = 1 η2Y = 1 η2Z = 5
η2φ = 50 η2θ = 50 η2ψ = 10
λX = 2 λY = 2 λZ = 3
λφ = 50 λθ = 50 λψ = 10
cX = 5 cY = 5 cZ = 50
cφ = 80 cθ = 80 cψ = 10
τφ = 0.1 τθ = 0.1

(16)
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(a) DSC filters make φd and θd (dashed red lines) follow φ̄ and θ̄
(dashed gray lines) with small lags, respectively. Then, sliding mode
controllers in (12) drive θ and φ (solid black lines) to θd and φd,
respectively.

(b) tracking reference signals with zero (solid black lines) and nonzero
(solid blue lines) initial conditions (IC).

Fig. 3: Tracking performance without disturbance.

A. Behavior of the sliding mode controllers with DSC filters

Figure 3 shows the tracking performance of both the DSC
filters and sliding mode controllers without any model uncer-
tainties or disturbances. In Figure 3a, the gray dashed lines
indicate the synthetic controls φ̄ and θ̄ required to drive the
quadrotor to a desired horizontal position (Xd, Yd) (equation
(8)). To use sliding mode control, we need the derivatives of φ̄
and θ̄. However, if their derivatives were computed analytically
from equation (8), we would have explosion of terms. Instead,
by introducing the DSC filters, the reference synthetic controls
φd and θd in dashed red lines (equation (9)) are able to track
φ̄ and θ̄ closely with only small lags. As a result, we can
compute their derivatives from equation (11) analytically. With
φd, θd, and their derivatives, the sliding mode controllers in

(12) can drive the quadrotor roll (φ) and pitch (θ) to θd and φd,
respectively. Therefore, horizontal position tracking is achieved.

Figure 3b shows the tracking results of a perfectly known
quadrotor model, with respect to zero or nonzero initial con-
ditions (IC). In the case with zero IC (black), we have almost
perfect tracking for all references. In the case with nonzero
horizontal IC, the convergence in X and Y is also fast, both
within 3sec.

B. Robustness evaluation of the sliding mode controllers with
DSC filters

1) disturbance: The disturbance model is an external wind
field Vwind = [10 10 10]m/s similar to [3], applied right after
time t = 5sec. To examine the disturbance effect, we used
zero references for X , Y , and Z, instead. Figure 4a shows
that the horizontal and vertical trackings are affected by about
10−3m and 10−4m, respectively. The tracking errors could not
be eliminated because we smoothed the signum functions to
avoid chattering. The results are acceptable because the errors
are so tiny and would not be noticeable.

2) model uncertainty: We examined the robustness of model
uncertainty by varying mass m and rotational inertia RI [5].
We first considered an uncertainty of 20% on mass and 10% on
RI, and second an uncertainty of 35% on mass and 15% on RI.
The tracking references are given by (15). Figure 4b shows the
simulation results. The difference in performance could not be
observed in the overall tracking plots. When zoomed in (gray
boxes), we can see that the altitude tracking is affected by
0.005m to 0.010m due to mass uncertainty, and the horizontal
tracking is affected by about 0.01m due to both mass and RI
uncertainty. Again, the additional tracking errors due to mass
and RI are quite small. The controllers are robust to mass and
RI uncertainty.

3) measurement noise: Lastly, we examined to robustness
to measurement noise by inserting white Gaussian noise (18)
(in SI units) [15] into the 12 states given by (2). The MATLAB
command randn(12, 1) generates a noise vector of 12 elements
with mean 0 and standard deviation (SD) 1. Then, the noise
vector is vector multiplied by the desired SD’s. The references
are again given by (15).

Noise = randn(12, 1)([10; 10; 10; 1; 1; 1;

10; 10; 10; 1; 1; 1]10−2)
(18)

The simulation results are shown in Figure 4c. The tracking
of the first 2 to 3sec are affected slightly by noise. The zoomed
in view in Z shows the noisy trajectory with an average error
of about 0.001m (blue line). Yaw tracking becomes a little
noisy but is essentially unchanged. Interestingly, observe that
the X and Y tracking trajectories are still smooth under noisy
measurements. It is due to the smoothing effect of the DSC
filters, which could be observed in Figure 5. The controllers
are robust to measurement noise.
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(a) constant wind disturbance

(b) mass and rotational inertia (RI) uncertainty

(c) measurement noise

Fig. 4: Tracking performance with model uncertainty, distur-
bance, and measurement noise.

VI. CONCLUSIONS

In this paper, we introduce DSC filters to overcome the
term explosion problem in sliding mode control of an un-
deractuated quadrotor. This technique is also applicable to
other nonlinear control methods, i.e. feedback linearization.
The filters introduce small lags but facilitate us to obtain time
derivatives of complex intermediate signals. The controllers
were first simulated under unmatched initial conditions in a
perfect model. Simulation indicated fast convergence to all
reference signals. The robustness of the controllers were tested
under wind disturbance, mass uncertainty, and measurement
noise. The controllers performs very well in all tests. In the
future, we would like to make the controllers adaptive to model
uncertainty and varying wind disturbance.
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Ẋ

Ẏ

Ż

φ̇

θ̇

ψ̇

V̇X
V̇Y
V̇Z
ω̇x
ω̇y
ω̇z



=



VX
VY
VZ

ωx + ωysφtanθ + ωzcφtanθ
ωycφ− ωzsφ
− ctmVX
− ctmVY
− ctmVZ

Iy−Iz
Ix

ωyωz − cr
Ix
ω2
x − Ir

Ix
Ωωy

Iz−Ix
Iy

ωxωz − cr
Iy
ω2
y − Ir

Iy
Ωωx

Ix−Iy
Ix

ωxωy − cr
Iz
ω2
z



+



0
0
0
0
0
0

cφsθcψ+sφsψ
m

cφsθsψ−sφcψ
m
cφcθ
m
0
0
0



U1 +



0
0
0
0
0
0
0
0
0
l
Ix
0
0



U2 +



0
0
0
0
0
0
0
0
0
0
l
Iy

0



U3 +



0
0
0
0
0
0
0
0
0
0
0
1
Iz



U4 (17)

Fig. 5: Synthetic controls with DSC filters under noisy mea-
surements.

[14] M. Huang, B. Xian, C. Diao, K. Yang, and Y. Feng, “Adaptive tracking
control of underactuated quadrotor unmanned aerial vehicles via back-
stepping,” in American Control Conference (ACC), 2010. IEEE, 2010,
pp. 2076–2081.

[15] M. Bouchoucha, M. Tadjine, A. Tayebi, and P. Mullhaupt, “Step by step
robust nonlinear pi for attitude stabilisation of a four-rotor mini-aircraft,”
in Control and Automation, 2008 16th Mediterranean Conference on.
IEEE, 2008, pp. 1276–1283.

144


