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Abstract—In this paper, we proposed an energy-based flight
planning system for Unmanned Aircraft Systems (UAS) Traffic
Management (UTM). Fuel consumption estimation at the flight
planning stage is safety critical in general aviation, because
energy-related failures are often life-threatening. However, con-
servative fuel estimation is not economical and environmentally
friendly because carrying unnecessary fuel load burns a lot
of extra fuel. The same reasoning holds in UTM. Aviation
researchers are actively working on optimizing fuel loading,
but such research is lacking in UTM. In this paper, we aim
to optimize energy consumption in UTM with a flight planning
system. The accuracy and effectiveness of the system is illustrated
by experiments and simulations, respectively.

I. INTRODUCTION

Recent advances in sensing and computing technology has
made unmanned aerial systems (UAS) low-cost but increas-
ingly capable of executing complex missions in challenging
environments. They have gained popularity in a vast range of
civilian applications, including goods delivery, infrastructure
surveillance, agricultural monitoring, and photography. To
ensure the safe separation between small UAS (sUAS) and the
general aviation, the Federal Aviation Administration (FAA)
restricts sUAS operations to be in Class G airspace and at
low-altitude, or below 500 feet above ground level (AGL)
[1]. However, many challenges remain for large-scale sUAS
operations to become a reality. First, many applications require
sUAS to be operated beyond visual-line-of-sight (VLOS),
which imposes safety issues and is prohibited by the FAA right
now. Second, the key infrastructure to enable the widespread
use of low-altitude airspace and UAS operations does not exist
[2]. Therefore, a new research topic called UAS traffic man-
agement (UTM) comes into place at the National Aeronautics
and Space Administration (NASA) [3]. The NASA UTM
program lists many research topics, such as static obstacle
avoidance, collision avoidance between vehicles, wind and
weather effects, and communication problems. A large subset
of these problems can be addressed at the flight planning stage
before a flight takes place.

Flight planning is important in UTM. First, it can better
protect the general public and reduce the negative externalities
from UTM missions. In general aviation, pilots’ interest is
aligned with the public because small mistakes may cost
pilots’ lives. However, in UTM failures, the society often bears

much more negative consequences compared to the pilots
due to the autonomous nature. A good flight plan before the
actual mission helps the pilots foresee and avoid many possible
risks and failures, and thus better protect the society. Second,
optimal flight planning can reduce the operational costs in
UTM missions. For example, energy shortage in missions
may force the vehicle to perform emergency landing and
introduce huge recycling costs. On the other hand, if vehicles
and batteries are frequently over-sized in small missions, the
additional operational costs can be significant. Flight plans
provide optimal solutions to this dilemma.

In this paper, we would like to propose an energy-based
flight planning system for a single multirotor sUAS under
the influence of wind and static obstructions. The paper is
organized as follows. First, before discussing UTM flight
planning, we have to understand how it is performed in the
general aviation today. This process is reviewed briefly in
Section II. Then, the sUAS flight planning problem is broken
into three sub-problems, namely power consumption model
identification, optimal routing, and wind estimation. Third,
the three sub-problems are addressed in separate sections.
Experiments and simulations are presented within each sub-
section. The wind estimation problem is still in progress, so it
will only be introduced conceptually and left as future work.

II. FLIGHT PLANNING IN GENERAL AVIATION

In general Aviation, an essential part of the flight planning
problem is fuel loading. It is generally estimated conserva-
tively, to ensure passenger safety and reduce energy-based
contingency cost. For example, fuel deficiency can cause
emergency landing in bad weather conditions. On the other
hand, fuel accounts for a significant portion of the aircraft
weight, and extra fuel weight causes unnecessary fuel burn.
To reduce costs and environmental impacts, airlines strive to
achieve fuel consumption reduction. Significant research has
been performed to evaluate the efficiency of current aviation
practice [4], [5]. Similar to other economic problems, fuel
loading in aviation is a balance between capacity and demand.
The energy capacity is given by the amount of fuel loaded on
board. On the other hand, the energy demand is much more
involved.



First, the demand computation requires fuel consumption
models based on aircraft performance. The fuel consumption
computation relies mostly on publicly available data. The
majority of this data is a combination of Eurocontrols Base
of Aircraft Data (BADA) to calculate fuel consumed while
airborne and the International Civil Aviation Organization
(ICAO) Engine Exhaust Emissions Data Bank to calculate fuel
consumed on the ground [6]. Researchers have also worked
on more accurate airplane fuel consumption models [7], [8].
In addition, aircraft manufacturers can often provide much
more accurate performance data, which is utilized by pilots
to perform flight planning.

Second, the fuel consumption model requires quality inputs
to generate meaningful fuel requirements. Some important
model inputs are payload, alternate airport, and the flight route
[9]. Payload estimation is based on regular booking update,
recent statistical data on people and luggage weights. The
selection of alternate airport is based on visibility and landing
capability at the destination airport. The most interesting input
that attracts a lot of research attention is route selection. Route
selection is based on waypoints called Very High Frequency
Omnidirectional Range (VOR) and airways [9]. The available
algorithms can be divided into two categories. In the first
category, the path is unknown and solved as a waypoint
sequence [10], [11]. In [10], the optimal waypoint sequences
with timestamps are computed by a set of prioritized and
decentralized path planning problems, with weather and dy-
namic constraints. In [11], the optimal trajectory is computed
from a Multiphase Mixed-Integer Program (MultiMIP), with
wind and dynamic constraints. In the second category, the
path is predefined as a VOR sequence and airway segments.
The goal is to control the aircraft speed or switch modes to
resolve congestions or conflicts. This field is known as Traffic
Flow Management (TFM). In TFM, researchers have tried
hybrid optimal control [12], [13], singular control [14], [15],
multistage nonlinear programming [16], and network-model-
based optimal control [17], [18]. Most of these methods are
computationally expensive, and are only suitable for a small
number of nodes (VORs) at the airborne stage.

III. PROPOSED UTM FLIGHT PLANNING SYSTEM

In this paper, we would like to explore a similar energy-
based flight planning scheme for UTM. To put the problem
into context, we focus on a package delivery example similar
to Amazon Prime Air [19]. The goal is to ensure that a
multirotor sUAS has enough energy to fly from an origin to a
destination optimally under the influence of wind.

The proposed flight planning system diagram is shown in
Figure 1. Figure 1a shows the decision diagram with inputs as
energy demand and capacity, and output as a vehicle-battery
combination. In our example, the energy capacity is simply the
battery capacity. Unlike manned aircraft, a multirotor sUAS
typically uses Lithum Polymer (LiPo) batteries as the energy
source. Due to size and payload limitations, there are only a
discrete number of choices available for a given vehicle. And
the battery weight usually accounts for a significant portion

(a) The decision diagram.

(b) The energy demand computation flow.
Fig. 1. The proposed system diagram for UTM flight planning.

of the vehicle weight. Assume that the energy demands are
known for different LiPo batteries, then the feasible vehicle-
battery combinations are the ones with demand-capacity ratios
less than 1.0. A combination with demand-capacity ratio close
to 1.0 is efficient but risky. Some contingency capacity should
be reserved for unexpected situations.

Similar to general aviation, the challenge is to compute a
good energy demand estimate, we propose a work flow similar
to aviation (Figure 1b). The process is best-understood in a
backward sequence. First, we need a vehicle-specific power
consumption model to account for different energy compo-
nents (Section IV). In our example, we focus on multirotor
type of sUAS because they are capable of vertical-take-off-
and-landing and advantageous in urban environments.

Second, we need an algorithm to perform energy-based
optimal routing (Section V). Unlike general aviation, in which
the routes are mostly given by a small set of nodes (VORs or
airports) and edges (airways), it is impossible to assume such
infrastructure in UTM for two reasons. First, to account for
terrain complexity and static obstacles, the vehicle trajectory
has to be much more refined for safety considerations. Second,
every home or store could become future UTM “airports”, the
number of waypoints will thus grow significantly. Therefore,
before we can talk about the traffic flow problem, we have
to first solve the autonomous navigation problem for a large
set of nodes, which is essentially a path planning problem in
robotics.

Lastly, for this approach to be practical, we need to estimate
the wind field in the region relevant to the flight mission
(Section VI). We only propose an approach to achieve this.
The experimental validation is left as future work.

IV. POWER CONSUMPTION MODEL

In this section, we briefly review existing power consump-
tion models for a multirotor sUAS. Then, we propose a
more comprehensive model from the helicopter literature. The
model is identified by simple experiments.



A. Literature Review

Quadrotor is the most common type of multirotor sUAS.
Extensive literature has developed in modeling and controlling
a quadrotor. Unfortunately, the power consumption problem
is not as well-studied. In [20], the power consumption of
multirotors with different number of rotors was studied exper-
imentally. In [21], power consumption of motors was studied
as a function of thrust. But in both cases, no systematic
models were developed. In [22], a detailed power consumption
model was developed for a convertible vertical-take-off-and
landing (VTOL) sUAS, but it is not for multirotor type of
vehicles. Multirotors are one type of helicopters. Therefore,
it makes sense to review the well-developed helicopter power
consumption literature [23], [24]. The proposed model is based
mostly on [23].

B. Proposed Model

The proposed power consumption model consists of three
components, namely induced power (Pi), profile power (Pp),
and parasite power (Ppar). The induced power produces the
thrust by propelling air downward. The profile power over-
comes the rotational drag encountered by rotating propeller
blades. The parasite power resists translational body drag when
there is relative motion between the vehicle and wind. Detailed
derivation based on first principles is addressed in a separate
paper. Interested readers can refer to [23]. If we assume that
wind is horizontal, then a simplified summary of the model is
as follows.

Pi(T, Vvert) = k1T

Vvert
2
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Vvert
2
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k22
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Pp(T ) = α2T

3/2

Ppar(V air) = α3||V air||3 = α3||V ground − V wind||3

(1)

where
• T is the total thrust.
• Vvert is the vertical speed.
• V air,V ground,V wind are the horizontal air velocity,

ground velocity, and wind velocity, respectively.
• k1, k2, α2, α3 are constants to be identified in experi-

ments.
When hovering (Vvert = 0), the induced power is reduced

to

Pi,hover(T ) =
k1
k2
T 3/2 4= α1T

3/2 (2)

For a typical helicopter, The three power components ac-
counts for more than 95% of the total power consumption
[23]. The model should be equally valid to a multirotor as
long as the vehicle has no rotor interference, which is valid
for a typical quadrotor because the propeller disks are not
overlapping [23]. The question is how much each individual
power component contributes to the total power, which we
address in Section IV-C.

TABLE I
IDENTIFIED PARAMETERS FROM EXPERIMENT

parameter value

k1 0.8554

k2 0.3051(kg/m)1/2

α1 = k1/k2 2.8037(m/kg)1/2

α2 0.3177(m/kg)1/2

C. Model Identification by Experiments

From equation (1) and (2), the power components are
superlinear functions of payload and wind. Thus, we will
focus on these two important factors in this section. To
identify the unknown coefficients, we performed three simple
experiments, namely hover, steady-state ascend/descend, and
steady-state circle, on an IRIS+ from 3D Robotics [25] with a
self weight of mg = 1.43kg. To minimize the effect of wind,
the experiments were performed in a football field surrounded
by plants on two sides. The detail identification process is
documented in a separate paper.

The identified parameters are shown in Table I. Note that the
parameter α3 cannot be identified due to the complication of
wind. Specifically, we cannot obtain steady-state readings of
Vair when the vehicle is circling. In addition, the geometry of
the payload also affects the circling paths. Figure 2 shows the
paths when the vehicle is with and without a package payload.
We will leave this part as future work.

V. OPTIMAL ROUTING

In this section, we first review path planning algorithms in
the robotics literature. Then we apply fast marching method
(FMM) and ordered upwind method (OUM) to UTM optimal
routing. The main contribution is on combining the algorithms
with energy-based cost profiles derived from the power model
in Section IV.

A. Literature Review

Many research efforts have focused on UAS path planning
[26], [27]. In [28] and [29], the problem was formulated
as a Mixed-Integer Program with rectangular constraints for
static obstacles. However, this approach is computationally
intensive. A second approach is potential field [30], which
is computationally fast but non-optimal and incomplete, or no
guarantee to reach the destination. Another type of approach
is heuristic-based such as A* and D* [31]. These algorithms
are fast but non-optimal. In addition, we have the Dijkstra’s
algorithm [32], which produces optimal paths in graphs.

The algorithms of choice are variants of the Dijkstra’s
algorithm designed for wave front propagation on surfaces.
An example is the fast marching method (FMM) [33]. It
improves the cost update in the Dijkstra’s algorithm to achieve
optimality in continuum, but FMM cannot take into account
the effect of wind. To resolve this issue, another variant of
the Dijkstra’s algorithm called the ordered upwind method
(OUM) is adopted [34]. But OUM is computationally slower



Fig. 2. Experiment 3: Circling path comparison for an IRIS+ with and without
the empty package.

Fig. 3. 2D visualization of the cost profile set CP (x,u).

than FMM by a constant factor. Therefore, when wind is
insignificant, FMM is still the best choice.

B. Algorithm Design in UTM Context

In this section, we discuss the data structure to represent
the world and the cost profiles to perform FMM and OUM.
Due to space limitation, we skip reviewing the details of the
algorithms. Interested readers may refer to [33] for FMM and
[34] for OUM.

1) World Representation: To account for static obstructions
such as terrain and buildings, we run the algorithms on digital
elevation models (DEM) [35]. DEM is simply a triangulated
mesh data structure with lists of vertices, edges, and faces.
Large scale terrain DEM can be obtained from NASA ASTER
GDEM2 [36].

For UTM routing, we elevate the DEM model upward by
150m (500ft), and then smooth it to avoid sharp change in
altitude. The resulting mesh is a 2D surface on which we
perform the routing computation.

2) Cost Profile Design: Imagine a quadrotor flying at po-
sition x is influenced by wind velocity V wind(x). Depending
on which direction it is heading, the energy consumption, or
cost, will be different. This behavior is captured by the cost
profile.

We define the cost profile set in equation (3). It is a set of
vectors with different magnitudes g(x,u) depending on which
direction u we are heading at position x. Figure 3 illustrates
the cost profile concept in 2D.

CP (x,u) = {u · g(x,u) |x ∈ Rn,u ∈ U} (3)

If the cost profile is a circle centered at x, then we say the
cost is isotropic. In this case, the effect of wind is negligible,
and the optimal routing problem can be solved efficient by
FMM. Otherwise, the cost is anisotropic, and the effect of
wind is noticeable. In this case, OUM is the method of choice.

The remaining task is to specify the cost profile g(x,u). The
control direction u is a unit vector pointing in the direction
of the ground velocity V ground. When parasite power is
negligible, the cost is independent of control direction u
(isotropic), and the total cost J(x) can be solved numerically
by FMM. Then at the cruising stage, the cost profile is defined
by equation (4).

gfmm(x) = (Pi + Pp)/Vground(x) (4)

When parasite drag is significant, the cost profile is de-
pendent on direction u (anisotropic), and the total cost J(x)
can be solved numerically by OUM. At the cruising stage,
the cost profile is defined by equation (5). The parasite power
is a function of air velocity V air (equation (1)), and thus
depends on both position x, or V wind, and control u, or
the direction of V ground. Lastly, for safety considerations, we
impose infinite cost on regions with wind speed exceeding a
maximum threshold Vwind,max, so that the optimal path does
not enter these regions.

goum(x,u) = (Pi + Pp + Ppar(x,u))/Vground(x)

+ Iinf (||V wind(x)|| > Vwind,max)
(5)

where the function Iinf (·) is defined as

Iinf (condition) =

{
∞, if condition is true
0, otherwise

(6)

After running the routing algorithm, the optimal cost map
is in unit of Joule [J ], or more commonly mAh for a LiPo
battery with fixed number of cells. This is the minimum energy
required to reach the destination at the cruising stage. Then, we
can further include the energy consumed during take-off and
landing to obtain the estimated energy consumed in the entire
trip. Other contingency-related energy considerations can be
applied on top of the energy estimate to obtain the total energy
demand.

The optimal path is found by running gradient descent from
the desired destination [33], and the 4D trajectory with time
stamps is obtained by combining the position x and ground
velocity V ground(x) along the 3D path.

Lastly, traffic flow management (TFM) techniques can be
applied to introduce delay controls to multiple trajectories
in the same airspace, to optimize operational and policy
constraints [12]–[18]. This is left as a future research topic.

C. Simulations

In this section, routing examples are provided in simulation.
The energy cost are computed numerically from equation (??),
(4), and (5), using the parameters in Table I and a ground speed
Vground = 10m/s. For illustration purpose, the parameter α3

is approximated to be 0.1kg/m from [37].



Fig. 4. FMM computation results on optimal costs and paths with static
obstacles.

1) FMM without wind: Figure 4 shows an optimal routing
example using FMM on a 250m × 300m space with two
building obstructions. The origin is at the lower-left corner
from the top view, while the destination is close to the upper-
right corner. The cost profile takes into account induced and
profile power, and the optimal cost, or minimum energy, to
destination is about 1.4 × 104J . From Table I, if the vehicle
flies at 150m altitude, the energy spent on ascend and descend
at 2.5m/s is 1.98× 104J . The total energy spent on the trip
is 3.38× 104J , or 782mAh with a 12V 3-cell LiPo battery.

2) OUM with wind: To observe the effect of wind, we
performed OUM simulations on a 1000m×1000m flat surface.
3D surfaces are possible but not presented. The result is shown
in Figure 5. Figure 5a shows a randomized wind field with
main direction heading 45◦ to the +x-axis, and with wind
speed ranging from 0 to 5m/s, which yields comparable
parasite drag. The sUAS goes from the origin to the lower-left
corner (−500m, 500m).

Figure 5b shows the result with parasite power only, with
minimum energy of 1.03×104J . The wind field is overlayed as
reference. Figure 5c shows the result with induced power and
profile power. They are constant throughout the navigation,
so the optimal cost are symmetric rings around the origin.
It takes 1.14 × 104J to destination. The same result can be
obtained faster via FMM. With all power components (Figure
5d), the optimal route is somewhere in between the previous
two cases, and the minimum energy is 2.37×104J . The value
is larger than the sum of the previous two cases because the
route is longer than the one in Figure 5c. Lastly, by including
the 1.98×104J energy consumed during take-off and landing
at 150m altitude with 2.5m/s vertical speed, we obtain the
total energy 4.35× 104J , or 1010mAh for a 12V 3-cell LiPo
battery.

For validation, we can perform a simple thought experiment
for the above scenario. The ascend and descend phases takes
1min each to complete, and the flying phase takes about
1.3min. Therefore, the vehicle spent 1010mAh in 3.3min.
With the 5100mAh default LiPo battery, the IRIS+ sUAS
can operate for about 17min. This duration is confirmed
repeatedly in our testings under nominal conditions.

Fig. 5. OUM computation results on optimal costs and paths with different
energy components.

VI. WIND ESTIMATION

One of the biggest challenges in UTM is the lack of wind
and weather data [2] in the low-altitude Class G airspace.
In this section, we would like to review existing wind data
collection technologies and propose a complementary wind
estimation method for UTM.

Wind data at the boundary layer, or low-altitude airspace, is
commonly collected with radar or sodar-based wind profilers
[38], [39]. Currently, the best available wind forecast data
is from the High-Resolution Rapid Refresh (HRRR) radar
assimilation [40]. However, due to terrain geometry, the wind
behavior at low altitude is quite complicated. Studies have
conducted on verifying the accuracy of HRRR [41], but the
result does not seem good. In addition, the infrastructure
required for data collection is cumbersome and expensive.

To complement with the existing wind forecast system,
we propose to use sUAS as distributed sensors to measure
wind fields in real time. Each sUAS can broadcast its time
stamp, position, and estimated wind vector via Automatic
Dependent Surveillance-Broadcast (ADS-B) [42], so that an
sUAS in mission has the latest wind information around it.
There is a rich literature on fixed-wing sUAS wind estimation
with pitot tubes and Extended Kalman Filters (EKF) [43] or
vehicle kinematics [44]. In [37], the wind speed and direction
is estimated by a hovering quadrotor without any atmospheric
wind measurement sensor. Lastly, wind tunnel testings were
performed in [45] to characterize the effect of wind, and the
drag coefficient seems to be a strong function of yaw.

However, this approach requires a minimum vehicle density
to become useful. Based on the Metropolis study [46], we
envision the future UTM will eventually overcome this barrier.
A small scale demonstration is left as future work.



VII. CONCLUSION

In summary, we proposed an energy-based flight planning
system for UTM. The system is designed to mimic the fuel
loading process in ATM flight planning. The main challenge
is on computing the energy demand. To resolve this, we
break the demand problem into three solvable small problems,
and introduced them in a backward sequence. First, a power
consumption model is proposed for energy estimation. Second,
routing algorithms such as FMM and OUM provide the
optimal paths. Since the algorithms are capable of optimizing
energy consumption, we proposed energy-based cost profiles
to perform optimal routing. The advantage is that the algorithm
gives the energy consumption directly. A future research
direction can be combining the optimal routing algorithm
with TFM algorithms for multi-aircraft regulation. Finally,
we proposed a wind estimation procedure to complement the
existing wind data collection infrastructure. The validity is to
be confirmed in future.
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