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Abstract

Unmanned Aircraft Systems Flight Planning: System Development and Feasibility Study

by

Zhilong Liu

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Raja Sengupta, Chair

Unmanned Aircraft Systems (UAS), commonly known as drones, are becoming increas-
ingly popular in civilian applications. However, the infrastructure to ensure the safe oper-
ations are still largely missing. In this dissertation, I addressed two problems related to a
flight mission. First, I propose a flight planning system specifically for single multirotor UAS
operations. The system generates a 4D trajectory at the pre-flight stage before an actual
flight taking place. Safety is achieved by ensuring enough energy to finish a trip under envi-
ronmental influences such as wind, as well as avoiding static obstacles. Second, I proposed
a hybrid controller capable of performing trajectory following as well as single-helicopter
collision avoidance. The controller enables a multi-rotor to follow the planned trajectory.

In the first part of the dissertation, I first divide the flight planning system into two
components: energy demand and energy supply. The demand side is determined by the
performance of the UAS, the environment, and the flight trajectory, while the energy supply
depends on the power source. Then, I focused on two specific problems on the energy
demand side. First, I quantify the energy performance of a UAS by developing a theoretical
power consumption model for multi-rotor Unmanned Aircraft Systems (UAS). The model
is derived from the helicopter literature. The model parameters are identified and validated
experimentally by flying an IRIS+ quadrotor UAS. Second, I solved the trajectory generation
problem by formulating it as an optimal control problem. The cost to be optimized is the
energy consumption or flight duration at the cruise phase of a flight mission, taking into
account 3-dimensional wind field and terrain variation. The problem is solved numerically
by the Ordered Upwind Method (OUM). By combining the optimized path with timestamps,
we can generate 4D trajectories typically used in aviation flight planning, and thus maximize
the software compatibility between manned and unmanned aviation. Simulation shows that
the generated trajectories are able to avoid obstacles such as high-rise buildings and give
energy consumption estimates along the entire trajectory.

In the second part of the dissertation, I addressed the trajectory following problem with
collision avoidance capability given a planned 4D trajectory. I analyzed the tracking perfor-
mance of an IRIS+ quadrotor for a challenging trajectory. In the scenario, wind played a
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big role in the cross-track errors. The collision avoidance capability, or a safety controller, is
integrated to the trajectory following controller by introducing a hybrid automaton, deciding
when to start the avoidance action and what control actions to take. The hybrid controller
is examined in a simple straight-line-following scenario to avoid a manned helicopter.
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Chapter 1

Introduction

1.1 Overview

This dissertation is about Unmanned Aircraft Systems (UAS), or drones. UAS are excit-
ing now and both government and industry is innovating rapidly. The Federal Aviation
Administration (FAA) is currently revolutionizing the National Airspace System (NAS) by
introducing the Next Generation Air Transportation System (NextGen). The robust inte-
gration of UAS into the NAS is in the NextGen road map. To achieve this goal, the National
Aeronautics and Space Administration (NASA) is actively developing the core technology,
leading to a new research field called UAS traffic management (UTM) [63]. UTM faces
many challenges in sensing, control, and flight management. This dissertation helps resolve
three of them, namely UAS flight planning, trajectory following, and collision avoidance with
manned helicopters.

To deliver a safe flight, we need a pre-flight stage and an in-flight stage, thus the two-part
structure of this dissertation. The first part advances the pre-flight task, or flight planning.
We propose a flight planning system to generate a 4D trajectory defined by 3D waypoints
with timestamps (or speedstamps). The second part focuses on in-flight tasks, including
trajectory following and collision avoidance. We design a hybrid controller capable of per-
forming trajectory following (speed-stamped) as well as collision avoidance with manned
helicopters since they are the primary manned aircraft at low altitude. The subsequent
paragraphs summarize the contribution of this dissertation to each problem.

1.1.1 Part I: Pre-flight

In Part I of the dissertation, we propose a UAS flight planning system to ensure that a
UAS can fly from an origin to a destination with either minimum energy or time, avoiding
static obstacles and under the influence of wind. To put the problem into context, we take
a package delivery example similar to Amazon Prime Air (Figure 1.1) [28]. When the UAS
flies from a distribution center to somebody’s home, it has to resolve several fundamental
problems. First, it has to determine a flight trajectory along with an energy estimate and



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A motivating example for the proposed energy-based UAS flight planning system.

an arrival time. Energy shortage can cause mission failures. Second, the UAS has to avoid
static obstacles such as buildings and mountains. Third, environmental factors such as wind
should be taken into account. Chapters 2, 3, and 4 belongs to this part.

Flight planning (Part I), as established in manned aviation, proposes flight speeds, alti-
tudes, and a horizontal path from an origin to a destination. The three together define a 4D
trajectory. We adopt the same focus, and compute all three for a UAS mission (see Chapter
2). We aim to pick the three to optimize energy costs and flight time, like flight planning
methods in the manned aviation literature. However, the current and future constraints of
unmanned aviation induce some important differences, which motivate the innovations in
this dissertation.

First, we develop a different algorithm to compute a minimum energy or trip time path for
UAS, instead of using the literature (Chapter 4). The algorithmic flight planning literature
can broadly be categorized into the graph-based [38] and continuum-based methods [115,
116, 31]. The graph methods use infrastructure like VOR stations and airways to generate
the graph. Most of the airspace opened for unmanned aviation has no such infrastructure
[92] and therefore no obvious graph. Hence, we seek a continuum approach to flight path
computation. The PDE-based approaches classify broadly into the shooting and collocation
methods. Both methods compute a 2D path in a rectangular grid defined at fixed altitude.
The grid assumption works fine on a fixed altitude above mean sea level (MSL), but it
cannot work on altitude above ground level (AGL) because such a surface undulates with
the terrain. Our algorithmic contribution on path optimization leverages the fast marching
and ordered upwind methods, which generalize to triangulated meshes. UAS flight planning
should also account for wind fields, as is the practice in manned aviation. We show in
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Chapter 4 that routes accounting for the winds can consume up to 40% less energy than the
straight routes. The collocation method models wind fields as low-order polynomials, which
works adequately for tropospheric winds. But terrain makes winds in the boundary layer of
the atmosphere (first 1km) considerably more variable. Since this is the airspace envisaged
for unmanned aviation, we turn to the ordered upwind method to handle wind fields with
high variability.

Second, minimum-energy flight path computation methods assign energy consumption
values to paths. Chapter 3 contributes a power consumption model for multirotor aircraft.
Flight plans computed in Chapter 4 are based on this model. While there is an extensive
literature on modeling power consumption for helicopters [57, 68] and fixed-wing aircraft [61],
such a literature on multirotors is small even though they are currently the most popular
UAS. Hence we focus on a power consumption model for multirotor UASs. The rotorcraft
power consumption literature separates power into induced, profile, and parasite power.
Flight planning requires all three, but Aleksandrov [6] and Roberts [105] only include induced
power. Hoffmann [45] models both induced and profile power for a multirotor at low speed.
Our model captures all three components at a range of speeds. We have evaluated our model
by calibrating it to a 3DR IRIS+ quadrotor from hover to its maximum speed of 20m/s flown
at the Richmond Field Station of the University of California, Berkeley [104]. Although this
example focuses on an electric UAS, the consumption model is valid for any type of energy
source.

Chapter 2 builds an overall UAS flight planning method out of the contributions in
Chapters 3 and 4. We present the method in the form of a flight planning case study for
an electric quadrotor UAS. The case study computes minimum time and minimum energy
routes between multiple origins and a single destination in a region with significant wind
and terrain variations. Chapter 2 also shows how to make the energy supply choice for an
electric quadrotor. This choice is an analog of the fuel loading problem in manned aviation
[88]. Essentially, one cannot estimate the energy demand without assuming a battery weight,
and one cannot derive the required battery weight without first knowing the energy demand.
Our methods resolve the two jointly in Chapter 2. The method presented is complete in the
sense of the established practice of commercial flight planning, though much work remains
to be done on computational efficiency. The case study shows how to choose battery weight,
flight altitude, flight speed, and flight path cost by energy consumption and trip time to
propose a complete unmanned analog of flight planning for manned aviation.

1.1.2 Part II: In-flight

In Part II of the dissertation, we illustrate that the trajectories generated from the FPS in
Part I can be followed reasonably well while ensuring safety. Specifically, we design feedback
controllers for two specific tasks, namely trajectory following and collision avoidance.

Chapter 5 handles the tracking of the trajectories generated in Chapter 4. We propose
a two-level controller architecture to perform trajectory following. The high-level controller
is a model predictive controller (MPC), while the low-level controller is a set of sliding con-



CHAPTER 1. INTRODUCTION 4

trollers. The tracking performance of these control architecture is studied for a challenging
trajectory with sharp turns. The major contribution is in the low-level controllers. Mul-
tirotors are known to be underactuated. Their roll and pitch dynamics are coupled with
horizontal motions. One approach to handle this problem is by adding outer-loop PID con-
trollers [137], but the performance is in general worse than nonlinear approaches such as
integrator backstepping [13, 74]. However, the backstepping controllers require rate terms of
the synthetic controls, which leads to an explosion of terms [127]. We resolve this problem
by augmenting the dynamics with two dynamic surface filters (DSC), to robustly track the
3D positions and Euler angles of a multirotor.

Chapter 6 presents a strategy to avoid collisions with manned aircraft at low altitude.
In a dynamical flight environment, we also need to avoid moving objects. At low altitudes,
the main moving obstacles are manned helicopters. In this chapter, we formulate a hybrid
controller to switch between two modes, namely trajectory-following and collision-avoidance.
The sensing technology is assumed to be automatic dependent surveillance-broadcast (ADS-
B). Compared to existing techniques, the proposed hybrid safety controller has two advan-
tages. First, it has a sense of optimality compared to [37, 94, 66, 60]. The controller is only
enabled when necessary. Second, it is computationally feasible, which is hard to achieve
with existing optimization techniques such as mixed-integer programming [78] and other
numerical methods solving Hamilton-Jacobi equations [81].

Lastly, Chapter 7 summarizes the contributions of this work and provide recommen-
dations for future study. The appendices include some details not presented in the main
chapters, mainly simulation results and derivations of equations. Appropriate references to
sections in the appendices are given throughout.

1.2 Summary of Contributions

In summary, the main contributions of this research are:

1. A flight planning system generates an optimal flight path, altitude, speed, and energy
source weight.

2. A power consumption model to evaluate energy performance of a multirotor UAS.

3. An optimal routing engine that generate minimum energy or minimum time trajecto-
ries.

4. A set of low-level sliding controllers augmented with dynamic surface filters (DSC).

5. A hybrid controller switching between trajectory following and collision avoidance with
ADS-B.
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Part I

Pre-Flight
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Chapter 2

The UAS Flight Planning System

In this chapter, we introduce the UAS flight planning system (FPS). We start by introducing
the flight planning problem in aviation and the challenges in the context of UAS operations.
Then, we describe the overall UAS flight planning system in Section 2.2. The system com-
ponents are discussed in conjunction with the aviation literature in the subsequent sections
(2.3, 2.4, and 2.5). Lastly, we give a comprehensive example illustrating our UAS flight
planning process in Section 2.6.

2.1 Problem Overview

In manned aviation, a flight planning system takes environmental and aircraft performance
information as inputs and specifies a 4D trajectory for the aircraft to follow. It is a safety
critical system because it involves the fuel calculation to ensure that the aircraft can reach
the destination. The amount of fuel is usually estimated conservatively, to ensure passenger
safety and reduce energy-based contingency cost. For example, fuel deficiency can cause
emergency landing in bad weather conditions. On the other hand, fuel accounts for a sig-
nificant portion of the aircraft weight, and extra fuel weight causes unnecessary fuel burn.
Therefore, flight planners also try to minimize flight cost through the appropriate choice of
route, altitude, speed, and by loading the minimum necessary fuel on board. Significant
research has been performed to evaluate the efficiency of current aviation practice [110, 109].

The fuel loading problem is a balance between energy demand and supply. To determine
how much fuel to load, we first have to figure out the energy demand, which depends on
aircraft self weight. But fuel accounts for a significant portion of the aircraft self weight, so we
cannot determine the demand without assuming a certain amount of fuel supply. Therefore,
fuel planners assume a certain amount of fuel and iteratively compute the energy demand.
Similarly, in UAS flight planning, we need to assume an energy source to start with. Our
UAS flight planning system focuses on electric multi-rotors with Lithium polymer batteries.
In this dissertation, we assume that we have a small number of UASs and batteries to choose
from, so that we can address the energy demand problem by exhaustively searching for every
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possible vehicle-battery combinations (Section 2.2).
In manned aviation, fuel demand computation involves four steps: payload estimation,

route and altitude selection, cruise speed selection, and contingency [29, 88]. Payload es-
timation includes the weight of transported people and goods. To manage the payload,
airlines maintain a recent average history of bags and nominal weights for people and bags.
In our FPS, we can safely assume that the payload is given. Contingency is considered by
specifying alternate landing airports and contingency fuel. In this dissertation, we don’t ad-
dress the contingency problem in depth because the capacity estimation problem of Lithium
Polymer (LiPo) batteries is very challenging. Instead, we handle contingency by specifying
threshold on the remaining state-of-charge (SOC) on a battery in Section 2.2.3, assuming
that the battery capacity is known and the SOC is accurately estimated by an equivalent
circuit model (ECM). In reality, the battery capacity estimation problem is complicated and
shall be studied in more detail in future research.

The problem we want to focus on is to select the route, altitude and cruise speed. To
the best of the author’s knowledge, researchers in aviation are not yet able to solve the join
optimization problem to address all three objectives simultaneously. Instead, they usually
optimize one by fixing the other two. The complication is that these three problems are
coupled. We cannot optimize the route without assuming a cruise speed and altitude [124,
54]. Similarly, to optimize the cruise speed along the trajectory, we have to first pick a route
and an altitude [93], and altitude optimization is done at a constant speed with a given route
[26]. The challenge is to account for wind-induced cost, which in general is a function of the
heading angle. Section 2.3 reviews the relevant routing algorithms in aviation. Similarly, in
our algorithm (Chapter 4), we first consider the route optimization problem at a constant
cruise speed and altitude. Then, we repeat this process exhaustively for a finite discrete set
of cruise speeds and altitudes and pick the best option (Section 2.2).

Unlike aviation, in which aircraft flies at constant altitude above mean sea level (AMSL)
(See 14 CFR 91.179), we argue that flying at constant altitude above ground level (AGL) is a
better approach for low-altitude UAS flights, because it provides an easy way to avoid static
obstacles. But to the best of our knowledge, no algorithms in aviation can optimize flight
routes at constant altitude AGL. Therefore, we develop a new optimal routing approach
which takes into account not only wind-induced cost, but also terrain constraint at constant
altitude AGL (Chapter 4). The drawback is that the computation time is slow. The algo-
rithm speed-up problem is left as future work. In the following section, we start introducing
our UAS flight planning system. The aviation literature is discussed as necessary in each
component.

2.2 The Proposed Flight Planning System

The proposed flight planning system diagram is shown in Figure 2.1. Figure 2.1a shows how
to compute the energy demand and supply for a single vehicle, while Figure 2.1b makes the
final decision after evaluating all feasible options.
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(a) The energy demand and supply computation flow for a single vehicle-battery combination.

(b) The decision diagram to select one out of all the available vehicle-battery combination..

Figure 2.1: The proposed system diagrams for UAS flight planning.

2.2.1 Inputs

In Figure 2.1a, the inputs in red are fixed for a given flight planning problem. They include
terrain and wind data, as well as the origin and destination pair. The inputs in green are the
ones we can make different choices on. They include vehicles, energy sources, fly altitudes,
and travel speed.

2.2.2 Energy Demand and Supply

Figure 2.1a shows the energy demand and supply computation flow. Each block is described
in the sections below. We briefly summarize the process here. First, we select a vehicle-
battery combination, an altitude, and a desired speed, and feed all six inputs to the optimal
routing engine (Section 2.3), which outputs a 4D trajectory. Second, we feed the 4D trajec-
tory into a power consumption model (Section 2.4) to obtain the energy demand for the given
set of green inputs. Finally, the energy demand is fed into a battery model (Section 2.5),
to determine whether the battery is sufficient. The output is the remaining state-of-charge
(SOC). This process is repeated for all vehicle-battery combinations at different altitude and
cruise speed range.
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2.2.3 Decision Making

With the list of SOCs generated from the process above for all the vehicle-battery combina-
tions, we can now make a final choice. The decision process is specified in Figure 2.1b. The
first decision criterion is the remaining state-of-charge (SOCremain). We set a hard threshold
on SOCremain in equation (2.1). The threshold is indicated in a red dashed line in the Figure.
A vehicle-battery combination with SOCremain less than SOCmin is infeasible. Otherwise, it
is feasible. This process filters out all the infeasible options.

SOCremain ≥ SOCmin (2.1)

For all the feasible combinations, we then perform efficiency and risk evaluation. The
evaluation prioritizes the combinations by imposing soft criteria such as energy efficiency and
safety margins. If SOCremain is slightly above SOCmin, the combination is energy efficient
but risky. Some contingency capacity should be reserved for unexpected situations. On the
other hand, if SOCremain is close to 1.0, then the combination is safe but energy inefficient.

2.2.4 Assumptions

Before going into further discussion, we first state some basic assumptions on the choices of
the green inputs.

1. We have a small number of multirotor UAS to choose from.

2. The energy source is Lithium Polymer (LiPo) batteries. For each UAS, we have a small
number of batteries of different capacities to choose from for each UAS.

3. The UAS can only fly at a fixed altitude above ground level (AGL), and we have a
small number of altitudes to choose from.

4. We have a rough idea of the desired trip time or travel speed (ground speed or airspeed).
By assuming a simple straight line route, we can compute a first choice of travel speed
to start the planning computation.

5. Along the trajectory, we use either a constant ground speed or a constant airspeed.
Trajectory optimization with varying speed remains unresolved.

The assumptions are mostly inherited from the aviation literature discussed in Section
2.1, but they also takes into account the uniqueness of multi-rotor UASs. The first two
assumptions imply that there are a finite number of UASs and batteries. In this dissertation,
we use the term vehicle-battery combination, or simply combination, to refer to a specific
choice of a vehicle and a battery. A small number of choices of flight altitude is likely for
two reasons. First, UASs are likely to be in low altitude uncontrolled class G airspace [92].
Second, altitude separation is necessary to ensure safety. The constant speed assumption is
typical in aviation to find an optimized route. It also enables us to find the optimal speed
by iteration, which we show later in Section 2.6.5.
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2.2.5 Objectives

Similar to manned aviation, the objectives of the flight planning system is to optimize the

• vehicle-battery combination

• 3D flight path

• flight altitude

• ground speed or airspeed

The 3D flight path and the ground speed together gives us a 4D trajectory with times-
tamps by applying equation (4.24) in Chapter 4. Further adjustment and control on the
speed are handled during flight by spline curvature and mode predictive control (MPC),
respectively, in Chapter 5.

With the assumptions and objectives in mind, we can now go through the individual
blocks in Figure 2.1a.

2.3 Optimal Routing

The first block is an optimal routing engine which takes the red and green information
as inputs and compute a 4D trajectory (3D waypoints with timestamps) as output. By
assumption 3, 4, and 5, we optimize the route for a single vehicle-battery combination at a
single altitude and a fixed speed. The trajectory could be optimized with respect to some cost
and constraints. Currently, the engine can compute either minimum-energy or minimum-
time trajectories at fixed ground speed or airspeed. In Chapter 4, we will go into details
on this block. To solve the optimization problem, we need an efficient algorithm (Section
4.4). And to define the cost and constraints properly, we need good environment data, which
we review in Section 4.5. For example, wind can affect the energy consumption of a UAS
when it flies in different directions. Therefore, to optimize energy consumption, wind field
data is desirable. For constraints, we are mostly interested in avoiding static obstructions
such as buildings and mountains. One possible approach is to utilize terrain data. Dynamic
obstacles are subjected to change and thus are not considered in the flight planning stage,
but we will explore the collision avoidance with manned aircraft during the flight in Chapter
6.

In manned aviation, route selection is based on waypoints called Very High Frequency
Omni-directional Range (VOR) and airways [88]. Airline pilots uses commercial software
such as Jeppesen MyFlitePlan [55] to plan the flight routes, or 4D trajectories as defined by
NextGen and SESAR [33]. In principle, airlines can fly wind-optimal routes, but in reality
they prefer to fly a set of verified fixed routes. The main reason is that the airspace rules are
complicated, and some of them are unpublished, so traditionally airlines would store routes
they knew would be accepted.
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Nonevertheless, there is a rich literature on aircraft trajectory optimization in wind. It is
generally a two-point boundary-value problems (TPBVPs) [17]. One example is the classical
Zermelo problem [138]. It is a minimum-time optimal control problem with a fixed origin
and a destination. Other costs can be a combination of time, fuel consumption, and penalty
regions [124, 122]. In most cases, the problem includes a dynamical equation relating ground
velocity, air velocity, and wind velocity in the horizontal plane.

In general, there are two types of algorithms solving this problem: shooting method and
collocation/transcription method [10]. A shooting method example is presented in [124].
The ground speed is assumed constant, and the control variable is the heading angle. By
applying Pontryagin’s minimum principle, a dynamical equation for the heading angle is
derived. By iteratively changing the initial heading angle in a gridded horizontal plane,
the optimal trajectory can be found. This process is repeated exhaustively for all available
altitudes to determine the optimal flight altitude. The biggest drawback of this approach is
that the convergence rate is highly dependent on the initial guess on heading. Secondly, this
approach only applies to regular gridded planes, making it difficult to account for obstacles
in low-altitude airspace where irregular terrain surfaces are present.

In [91] and [11], the authors use collocation method to solve the continuous-time optimal
trajectory problem. In this method, the state is approximated using a polynomial to match
the collocation points in a gridded plane. The solution is given by a polynomial expression
as a function of time. The major drawback is that wind data has to be parametrized as
analytic functions. But parameterizing wind with low-order polynomials cannot capture
the spatial irregularity and turbulence nature of small-scale low-altitude wind (Section 1.1).
Secondly, it cannot handle irregular terrain meshes. Third, the computation time explodes
as the number of collocation points increases.

In addition to the two standard approaches, researchers in [54] tries another algorithm
called neighboring optimal control (NOC) to numerically approximate the minimum-time
Zermelo solution. The altitude and airspeed are assumed constant. The algorithm is a
variation of linear quadratic regulator (LQR), and the solution is given as a time-to-go look-
up table. But this approach models wind as augmented wind shear states, which again
cannot capture wind field directly in the computation.

The proposed UAS flight planning system give a new approach to address the terrain
geometry problem by using elevated digital elevation models (DEM) as feasible flight regions
(Section 4.5.1), instead of an idealized 2D gridded plane. It provides a simple way to avoid
mapped static obstacles without formulating complex optimization problems. But it also
renders the traditional shooting method and collocation methods unusable. Therefore, we
explore the Ordered Upwind Method (OUM), an algorithm with native support to trian-
gulated mesh terrain data (Chapter 4). In addition, the FPS utilizes wind data at a fixed
altitude AGL to address the spatial complexity of low-altitude wind. The temporal aspect is
left as future work. The wind data is used to predict energy consumption (Section 4.5.2) and
produce minimum energy and minimum time routes (Section 4.4). To optimize the cruise
speed and altitude, we use an exhaustive search approach similar to manned aviation (Sec-
tion 2.6. The entire routing process can be easily automated, and thus provides an efficient
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and flexible approach to address the high traffic volume demand.

2.4 Power Consumption Model

After optimizing the route, we feed the 4D trajectory to a power consumption model (Chapter
3) to estimate the energy demand as a time history of power draw. This is shown in the
second block in Figure 2.1a. This model is developed specifically for multi-rotor type of
UASs. We find that the energy performance study on multi-rotors is small, but they are the
most popular platforms in complex environments. Other types of UASs have more detailed
studies. We only focus on the steady-state performance because the model is also used in
the cost function inside the optimal routing engine. The model-specific literature review
is provided in Chapter 3. In the following, we briefly explain how power model is used in
aviation.

Our model is developed based on aviation practice. In manned aviation, the fuel con-
sumption computation relies mostly on publicly available data. A majority of this data is
a combination of Eurocontrol’s Base of Aircraft Data (BADA), to calculate fuel consumed
while airborne, and the International Civil Aviation Organization (ICAO) Engine Exhaust
Emissions Data Bank, to calculate fuel consumed on the ground [52]. Aircraft manufacturers
can often provide much more accurate performance data, which is utilized by pilots to per-
form speed optimization. Similarly, in the proposed FPS, we develop a power consumption
model for multi-rotor UAS to predict the energy consumption in a given flight trajectory.
This model also enables us to optimize altitude and cruise speed. In the sections below, we
explain the optimization process briefly.

2.4.1 Altitude Optimization

With the power consumption model, we can further optimize the fly altitude based on wind
information. In Chapter 3, we will show that the energy consumption of a UAS is a strong
function of wind. In many cases, wind speed goes higher as the altitude increases [113].
Therefore, we want to fly low when against wind and fly high when along wind (Section
3.5.2). Since we assume that we only have a few choice on altitude, we can simply iterate
all the available choices to find the optimal one. This approach is adapted directly from
aviation [124, 54].

In aviation, safety and fuel consumption are the main concerns on altitude selection.
It is selected based on flight levels separated by 1000 feet [124]. Even number of flight
levels are assigned to one flight direction, while odd numbers are assigned to the other. Air
traffic controllers assigns the cruise altitude to balance the congestion in each flight level. If
congestion is not an issue, then altitude can be chosen to minimize fuel consumption [26].
In our work, we don’t consider congestion, and thus altitude is chosen to solely minimize the
energy consumption.



CHAPTER 2. THE UAS FLIGHT PLANNING SYSTEM 13

2.4.2 Speed Optimization

The power consumption model is also important in speed optimization. Given the flight path
and altitude, there is an optimal speed minimizing the energy consumption. When flying
too slow, the UAS spends more energy to maintain hovering. While flying too fast, the UAS
can spend an excessive amount of energy on overcoming aerodynamic drag (Section 3.5.1).
We optimize the travel speed by exhaustive search or iteration. Here we provide a high level
description of the procedures. The example in Section 2.6 will make it more concrete. To
do exhaustive search, we can feed a feasible range of ground speeds and airspeeds to the
optimal routing engine to assess the resulting trajectories. To perform iteration, we start
the computation in Figure 2.1a with a first speed and obtain a 4D trajectory. Then, we
iteratively compute the energy consumption by applying different constant ground speeds
along the same trajectory. It gives us an optimal ground speed with minimal energy (See
Section 3.5.1). Then, we can use this ground speed to repeat the demand and supply
computation in Figure 2.1a to obtain a slightly different 4D trajectory, and compute the
optimal ground speed again for this new trajectory. We can repeat this process several times
to obtain an almost optimal ground speed for our trip.

The optimal speed problem also exists in aviation. At low speed drag due to lift dom-
inates, while at high speed parasite drag dominates. The fuel burn per unit distance is
minimized at an optimal speed. In general, fuel burn is proportional to thrust for turbojet
and turbofan engines. In unaccelerated level flights (constant ground speed), we can mini-

mize the thrust T to maximize endurance, or minimize the CD/C
1/2
L ratio to maximize the

cruise range. When the ground speed is allowed to change, more fuel saving can be achieved.
In [93], the author uses singular optimal control to optimize the speed along a fixed route
at constant altitude. For a Boeing 747-400, the fuel saving is about 7% compared to the
constant cruise speed case. Currently, our FPS only focus on constant speed optimization.
The varying speed case is left as future work.

2.5 Battery Model

Lastly, the energy supply of interest is Lithium polymer batteries, so we feed the power draw
history to a battery model to discharge it, as is indicated in the third block of Figure 2.1a.
The main difficulty is on estimating the battery capacity, which is a complicated function
of current draw, temperature, and charging-discharging cycle [16, 3, 71]. This problem is
not the main focus of this dissertation. Therefore, we assume that the battery capacity
is accurately estimated. In this section, we provide a simple discharging method. Further
development on the energy supply is out of the scope of this dissertation. The final output
is the remaining state-of-charge, or the percentage of energy capacity left, inside the battery.
We go through this process for all the available vehicle-battery combinations, or only for
a subset of the combinations filtered by some heuristics, and we will end up with a list
of remaining SOCs for each combination. They can be either positive or negative. If the
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Figure 2.2: A simple equivalent circuit model of a LiPo battery.

remaining SOC is below a certain threshold, we say this combination is infeasible. The more
positive the number, the better the contingency margin. In the remaining of this section, we
will describe the battery discharging process with a equivalent circuit model (ECM).

Equivalent Circuit Model (ECM) is a simple approach to capture LiPo battery discharging
behaviors [41]. Figure 2.2 is the model we use. The voltage source is the open circuit voltage
(OCV), which is a function of SOC. The battery has an internal resistance of RI . The
battery output voltage and current are V and I, respectively. Equation (2.2) describes
battery charging/discharging. Q is the nominal capacity of the battery. The input is current
I(t).

˙SOC(t) =
1

Q
I(t), SOC(0) = SOC0 (2.2)

To compute I(t) at the current time, we can solve the following quadratic equation. The
solution has two values, but only the proper value is chosen. It is obvious because we know
that the voltage V is about 12V .

P (t) = I(t)V (t) = I(t) (OCV (SOC(t))−RII(t))

The remaining state-of-charge SOCremain is the final value of the solution in equation
(2.2).

2.6 Flight Planning Example

In this Section, we illustrate how to use the UAS flight planning system with small examples.
The intent is to give the readers an idea on the computation flow inside the FPS. We
developed and host a FPS repository in [131]. Interested readers can follow the instructions
therein to repeat the flight planning process in the examples.
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Figure 2.3: Terrain data at Perdigao in Portugal.

Figure 2.4: Wind data at Perdigao in Portugal at 3 different altitudes AGL at 00:00 UTC,
May 19, 2017.

2.6.1 Specify the Fixed Inputs

As per Figure 2.1a, we start by specifying the fixed inputs. The terrain data is a portion
of the dataset presented in Section 4.5.1. We visualize it in Figure 2.3. Each data point
is specified by a horizontal coordinate (X, Y ) in km and an altitude above mean sea level
(AMSL) as indicated by the heat map color. The altitude varies from 180m to 620m AMSL.
The example origin is shown in a red star, and the destination is a green circle.
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The wind data at different altitudes is shown in Figure 2.4. We obtain the data from the
Environmental Fluid Mechanics and Hydrology Group (EFMH) at UC Berkeley [32]. The
datatips indicate the horizontal wind components. In general, the wind magnitude becomes
larger as the altitude increases. At location (15.5, 21.0)km, the wind speeds are 12.4m/s,
14.7m/s and 15.9m/s at 45m, 108m, and 140m AGL, respectively. For simplicity, we will
assume the UAS can fly at 50m, 100m, and 150m AGL, and we use the closest corresponding
wind field. Section 4.5 has a more detailed description of the terrain and wind data.

2.6.2 Specify the Variable Inputs

The UAS we use in this example is a 3DR IRIS+. It comes with a 3-cell 5000mAh LiPo
battery. The vehicle frame without battery is 11N , and one battery weighs 3N . The internal
resistance of the battery is unknown, but we assumed a reasonable value of 30mΩ from [130].
The battery has a discharge curve shown in Figure 2.5 with the following parameters.

mgbatt = 3N RI = 30mΩ Q = 5000mAh SOC(0) = 1.00

mgUAS = 11N SOCmin = 0.10

We can connect multiple batteries together in parallel to increase the capacity and obtain
different vehicle-battery combinations. In this example, we try IRIS+ with 1, 2, 3, 4 and 6
batteries. Suppose we connect N batteries together, then the total vehicle weight and total
battery internal resistance are

mgtotal = Nmgbatt +mgUAS

RI,total = RI/N

Qtotal = NQ

Figure 2.5: OCV as a function of the discharged capacity / SOC.
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2.6.3 Path Optimization

To compute the energy demand, we first elevate the terrain surface to the altitude of choice.
In this example, we start with 150m AGL. The terrain surface is smoothed by a Gaussian
filter to avoid sharp changes in altitude. This is necessary to avoid destabilization of the
vehicle. Further modifications to the terrain surface can be applied, but we will not go
further in this dissertation.

The wind field we use here is the third one in Figure 2.4. The wind field has a maximum
wind speed of 16m/s. In Chapter 3, we show that the maximum airspeed of an IRIS+ is
about 20m/s. Since the vehicle is flying against wind, to make sure that we can fly to the
destination, we choose a first ground speed of 5m/s. Further discussion on optimizing the
speed with constraints is presented in Sections 2.6.5 and 2.6.6.

Now that all six inputs in Figure 2.1a are specified, we can feed this information to the
optimal routing engine developed in Chapter 4 to minimize either energy consumption or
trip time. In this example, we choose to minimize the energy consumption at the fixed initial
ground speed (Section 4.3.6). The first optimal path is the blue line shown in Figure 2.6.

Figure 2.6: The minimum energy path generated from the optimal routing engine in Chapter
4.

Since we know the ground speed, we can convert the path to a 4D trajectory by attaching
timestamps using equation 4.24. The minimum energy trajectory is shown in Figure 2.7a.
The trajectory is then feed into the power consumption model to generate a time history of
power draw in Figure 2.7b. The constant power at the beginning and the end are during
take-off and landing, respectively. The optimal energy spent on this trip is 538.2kJ at the
first ground speed.
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(a) 4D trajectory. (b) power consumption time history.

Figure 2.7: The initial result from the energy-optimal routing engine and power consumption
model.

Figure 2.8: The energy consumption comparison at different altitudes.

2.6.4 Altitude Optimization

Now we can optimize the energy consumption further by repeating the same computation
at different altitudes. We repeat the path optimization computation again for the other
two altitudes. The optimal paths at the first ground speed 5m/s are indicated in Figure
2.6. Figure 2.8 shows that the energy consumption at 100m and 50m AGL are 495.3kJ and
406.1kJ , respectively. The optimal altitude at the first ground speed is thus 50m AGL. For
this particular wind field, as the altitude becomes lower, the energy consumption becomes
smaller. It is because the IRIS+ is traveling against wind, and flying lower saves energy. The
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energy savings are quite significant because at this airspeed the aerodynamic drag reduces
dramatically as the altitude gets lower (Chapter 3). If we were traveling in the opposite
direction, flying higher would be preferable. But flying lower is more risky because the
chance of hitting obstacles increases. We may further quantify the cost on energy and risk
to select an altitude, but the choice is more of an art than science. We will not address this
problem in this dissertation.

In this example, the result above suggests that we can pick an altitude and proceed to
the next step: speed optimization. But in general, we don’t know the optimal altitude for
this speed is also optimal for a different speed. Instead of making assumptions on the wind
field structure, in this dissertation, we address this issue by performing exhaustive search,
meaning that for each available altitude, we search for an optimal speed over a reasonable
range of ground speed and airspeed. In the next section, we will discuss two approaches to
perform speed optimization.

2.6.5 Speed Optimization

Next, we would like to optimize the ground speed or airspeed, and choose the one giving
a lower energy consumption or shorter trip time. We have two approaches to do this opti-
mization: exhaustive search or iteration. We start by focusing on optimizing ground speed
at 150m AGL. The computation is repeated for different airspeeds and other altitudes.

Approach 1 - Exhaustive Search We can optimize speed by exhaustive search (Figure
A.1). Over a range of ground speeds, we compute the corresponding optimal trajectories.
The black stars in Figure A.1a presents the minimum energy E in kJ for a discrete range
of ground speeds from 4m/s to 15m/s. The dark dashed line connects the optimal choices
together. Figure A.1b shows the variations of optimal paths among the range of ground
speeds. For each path, there is a E-Vground curve in Figure 2.9a. The bottom of the parabola
gives the optimal ground speed for the path that minimize energy. In this case, the path
varies gradually. In general, there can be a sudden change in the paths after a certain ground
speed threshold. This behavior is observed in other origin-destination pairs. See Appendix
A. In Figure 2.9a, the thin colored dashed lines show the E-Vground relationship for a given
optimal path. If we pick a path not at the corresponding optimal ground speed, we could
spend more energy. This is for 150m AGL and a 3N battery weight. Finally, each E-Vground
curve in Figure 2.9a becomes an energy versus trip time (E-T ) curve in Figure 2.9. In this
case, the trip time that minimizes the energy consumption is at T = 22.1min.
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(a) Optimal energy consumptions.

(b) The corresponding optimal paths.

(c) The corresponding trip times.

Figure 2.9: Repeat the iteration process for a set of ground speeds.
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Approach 2 - Iteration: We can also optimize speed by iterating between ground
speed and flight paths. Figure 2.10 shows the process. The black circle in Figure 2.10b
shows the E-Vground point of the first ground speed 5m/s. We generated a minimum energy
flight path, or the blue line in Figure 2.10a. Now we will fly this path at various ground
speed and plot the energy consumptions. The result is shown in the blue line in Figure 2.10b.
The black star indicates the optimal ground speed is Vground,1 = 10.0m/s for this path. With
this updated ground speed, we then compute the minimum energy path again (red line in
Figure 2.10a), and re-optimize the ground speed (red line in Figure 2.10b). In this case, we
get almost similar result in the second iteration, Vground,2 = 10.4m/s, so we can stop here.
In general, we would perform multiple iterations until the speed converges.

(a) Flight path iterations. (b) Ground speed iterations.

Figure 2.10: Search for the optimal ground speed on the flight paths at 150m AGL.

We repeat the same iteration process for some other origins and observed different con-
vergence behaviors. Figure 2.11 shows the iteration results. For paths at origins #1 and #4,
two iterations are enough, but for paths at origins #2 and #3, the second iterations give
quite different paths (Figure 2.11a). To obtain better results, more iterations are needed.
In many cases, we expect convergence in a few iterations, but we are unable to prove the
convergence proof for all cases in general. This is a future direction of research.
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(a) Flight path iterations. (b) Ground speed iterations.

Figure 2.11: Similar convergence result for the other origins in Figure 2.3.

2.6.6 Speed and Arrival Time Constraint

There are times when we cannot achieve the optimal ground speed. In our example, imagine
that the FAA regulates that the maximum ground speed a UAS can travel is 8m/s, or
somehow we know that under this wind condition, the maximum ground speed the UAS can
reach is 8m/s. In either case, we have to generate the minimum energy trajectory with a
lower ground speed because the optimal speed does not comply with regulations or vehicle
performance.

Figure 2.12: The energy consumption versus travel duration in two iterations.
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There are also times when we have to fly faster than the optimal ground speed to meet
certain deadlines. For example, if the package delivery time is no later than half an hour
from now, but at the optimal ground speed, we will be late by 3 minutes. In this case, we
can change the x-axis in Figure 2.10 to be the trip time T in minute. The updated plot is
shown in Figure 2.12. If the arrival time had to be before 20 minutes, as is indicated by the
black circle, then we have to sacrifice 8kJ more energy to avoid late arrival. In this case,
even though the red path labeled “Iteration 2” is not the minimum energy trajectory for this
arrival time, it is a good enough approximation without introducing extra complications.

In addition, the slope of this curve indicates a trade off between time and energy. At the
black circle, the slope is −5.76kJ/minute, meaning that one minute delay saves 5.76kJ of
energy. If we know that the monetary penalty on late arrival is $β/minute and the energy
cost is $α/kJ , we can formulate a cost function similar to equation (2.3) to optimize the
cost of this trip.

J = αE + βt (2.3)

This concludes the energy demand computation for 150m AGL and 3N battery example.
In the next section, we will give a complete exhaustive search example.

2.6.7 Energy Demand: A Complete Exhaustive Search Example

As was mentioned at the beginning of Section 2.1, we focus on optimizing paths at both
fixed ground speed and airspeed. In the flight planning example above, we computed the
minimum energy trajectory at a fixed ground speed. We can also minimize trip time at a
fixed ground speed. In addition, we can do minimum-energy or minimum-time trajectories
at various given airspeeds. The two objectives with given airspeeds turn out to be equivalent.
For more information on these four cases, refer to Chapter 4.

To explore all possible cases, we perform an exhaustive search for all available altitudes,
ground speeds, and airspeeds, with trajectories minimize energy or time. For five different
vehicle-battery combinations (IRIS+ with 1, 3, 3, 4, 6 batteries), we do an exhaustive search
on all four formulations and three altitudes, and we end up with an E-T diagram in Figure
2.13. The legend in this figure does not distinguish the vehicle-battery combinations due to
space limitation. To see the plot for each individual combination, refer to Appendix B.
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Figure 2.13: The exhaustive search result for a range of altitudes, ground speeds, and air-
speeds for an IRIS+ with different number of batteries.

In general, we would like the energy to be as low as possible. The main constraint would
be the arrival time deadline, which can push the optimal choice to the left. For our wind
field, the energy consumption increases with altitude, as observed earlier. The minimum-
energy-at-various-given-ground-speed case gives results very similar to the two cases at given
airspeed, and they give the optimal energy-time trade off. On the other hand, the minimum-
time-at-various-given-ground-speed case gives results far from optimal. Lastly, as the number
of batteries increases, the energy consumption becomes larger, and this difference increases
as the trip time becomes longer.

2.6.8 Energy Supply: Battery Discharging

To see whether the energy supply is sufficient, we discharge the battery by feeding the power
draw time history to the battery model (Section 2.5). Without any speed and arrival time
constraints, we can use Figure 2.13, or Appendix B, to select the most efficient vehicle-
battery combination. We start with the 1-battery combination. If it is not feasible, we
increase the number of batteries. At 150m AGL, the discharging time histories for an IRIS+
with different number of batteries at their optimal ground speeds are shown in Figure 2.14.
In the 1-battery and 2-battery cases, the final SOC is less than the SOCmin threshold.
Therefore, these two combinations are infeasible. The other combinations are feasible. The
3-battery combination has a SOCremain of 0.215 > 0.10 and therefore is the most energy-
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efficient option. As the number of battery increases, the SOC margin increment becomes
less and less, and the discharging time history between the 6-battery combination is almost
identical to the 4-battery case. The final SOC in the former combination is larger only
because the trip time is shorter. Therefore, after a certain threshold, adding more batteries
does not increase the cruise range.

Figure 2.14: Battery discharging time histories at 150m AGL.

2.6.9 Arrival Time Constraint

To explore the optimal options under arrival time constraints, we assume three trip time
limits, namely 20min, 15min, and 10min. Again, by using Figure 2.13 or Appendix B, we
obtain the results in Table 2.1. In the SOCremain column, the red dash indicate an infeasible
option, while the blue number is the first feasible option.

For an arrival time limit of 20 minutes, the trip results are the same as the unconstrained
case above. It is because the optimal speeds all satisfies the time deadline. The optimal
choice would be IRIS+ with 2 batteries at 50m AGL flying at a ground speed of 12m/s.

If we reduce the trip time limit to 15 minutes, the optimal speeds are all shifted to
Vground = 15m/s. The remaining SOC for the 2-battery case 0.11, barely above the threshold.
If we would like to consider contingency, then we may choose the 3-battery combination
with SOCremain = 0.37, instead. Sizing up the battery also reduce the actual trip time.
The 6-battery combination gives an optimal trip time of 12.8 minutes, while all the other
combinations are about 15 minutes. But without contingency, the optimal choice would be
an IRIS+ with 2 batteries at 50m AGL flying at a ground speed of 15m/s.
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When the trip time limit is 10 minutes, the optimal speed becomes Vair = 25m/s for
all combinations. In this speed, the first feasible option is IRIS+ with 3 batteries, giving
a remaining SOC of 0.18. In this case, sizing up the battery does not reduce the trip
time because all unconstrained optimal speeds give longer trip times. Without considering
contingency, the optimal choice would be an IRIS+ with 3 batteries at 50m AGL flying at
an airspeed of 25m/s.

Table 2.1: Optimal choice from FPS at different trip time limits.

Battery
Capacity

[mAh]

Total Vehicle
Weight [N ]

Altitude
[m AGL]

Optimal
Speed [m/s]

Energy
Demand

[kJ ]

Trip
Time
[min]

SOCremain
[−]

20min Trip Time Limit

5, 000 14 50 11 (Vground) 291.7 20.0 −
10, 000 17 50 12 (Vground) 337.4 18.2 0.173

15, 000 20 50 13 (Vground) 383.3 16.4 0.385

20, 000 23 50 14 (Vground) 430.4 15.15 0.487

30, 000 29 50 15 (Vground) 526.5 12.8 0.584

15min Trip Time Limit

5, 000 14 50 15 (Vground) 329.4 14.8 −
10, 000 17 50 15 (Vground) 356.7 14.7 0.111

15, 000 20 50 15 (Vground) 391.6 14.6 0.369

20, 000 23 50 15 (Vground) 431.6 14.2 0.484

30, 000 29 50 15 (Vground) 526.5 12.8 0.584

10min Trip Time Limit

5, 000 14 50 25 (Vair) 462.2 9.9 −
10, 000 17 50 25 (Vair) 474.7 9.9 −
15, 000 20 50 25 (Vair) 490.5 9.9 0.176

20, 000 23 50 25 (Vair) 509.9 9.9 0.375

30, 000 29 50 25 (Vair) 560.6 9.9 0.553

In the next two chapters, we will discuss the power consumption model and optimal
routing engine used in the examples.
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Chapter 3

Power Consumption Model

3.1 Introduction

In this chapter, we develop a power consumption model to estimate the energy demand in
a UAS flight. We first review the relevant literature in Section 3.1.1 and summarize our
contribution in Section 3.1.2. We present the model in Section 3.2, then we perform system
identification to obtain parameters for a 3DR IRIS+ quadrotor UAS. The model is validated
in Section 3.4. Finally, we simulate some insightful aviation scenarios with this model in
Section 3.5.

3.1.1 Literature Review

In this section, we briefly review existing power consumption models for a multirotor UAS.
In Chapter 2, we saw that energy demand in a commercial flight is computed using perfor-
mance data such as the Eurocontrol’s Base of Aircraft Data (BADA) and International Civil
Aviation Organization (ICAO) Engine Exhaust Emissions Data Bank. Similar to airline fuel
loading, we need to model the power consumption of UAS. We focus on multi-rotor type
of UAS for two reasons. First, multi-rotor is the most popular type of UAS platform in
complex environments. It is capable of vertical-take-off-and-landing, and hover to stop in
emergency situations. Second, the literature on modeling multi-rotor energy consumption is
small.

First, most of the current studies are empirical and data driven. In [6], the author studies
the energy consumption of multi-rotors with different numbers of rotors. They study rotor
force as a function of rotor speed, and measure the power consumption of a single rotor. In
[105], the author decomposes the power consumption of a PCB quadrotor into avionic and
payload power. Power is studied as a function of thrust only, and flight time is studied as
a function of weight. In [83], the author has collected power consumption data for a variety
of motors and measures the power draw as a function of thrust. This is also the approach
taken in commercial aircraft because modeling the aircraft performance is difficult.
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Second, multi-rotor-related power consumption models are either incomplete or only
developed for highly-customized platforms. In [45], the power components of a quadrotor
was studied in the context of quadrotor dynamics. But the power components presented,
such as induced and profile power, are only valid at low airspeed (< 5m/s). The author in
[96] develops a theoretical power consumption model for a customized research platform -
called small convertible UAV. The aerodynamic forces were separated into thrust, in-plane
force, and in-plane torque. An analytical model with six non-dimensional parameters is
identified experimentally with UIUC wind tunnel measurements. The power model accounts
for both thrust and drag in different vehicle configurations.

3.1.2 Contributions

We adopt a similar modeling approach but based on helicopter theory [57, 68]. In comparison
to the empirical approach, the analytical approach provides more insight and is able to
predict flight behaviors in untested situations. We will show this advantage in Section 3.4.2.
For hovering, ascending/descending and low-speed flights, we find that helicopter models
gives a good fit to our experimental data. However, at high speed flights, existing models
such as the Glauerts induced velocity model [68] could not fit the data properly due to the
4-rotor configuration of a quadrotor. Therefore, we introduces some modifications to existing
models to improve the model accuracy. The modification is discussed at the end of Section
3.2.1. A comparison on the accuracy is presented in Section 3.3.3. Lastly, we performed a
statistical test to show that the identified model parameters are robust to re-sampling at the
end of Section 3.3.3.

3.2 The Proposed Power Consumption Model

We focus on estimating the steady-state energy consumption of a multirotor UAS in long
trips. The flight paths consists of a vertical-take-off segment, an arbitrary cruise segment, and
a vertical-landing segment (Figure 3.1). The steady-state assumption is reasonable because
accelerating and decelerating maneuvers only account for a small portion of missions. Under
this assumption, the external forces are in static equilibrium, yielding zero net acceleration.
This avoids a dynamic model and renders a static map from commanded speed and thrust
to energy. The model can also capture the impact of wind on energy consumption, but it
requires wind data as a model input. We measured airspeed experimentally with a pitot
tube on board the UAS.
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Figure 3.1: The definition of a trip.

We derive the power consumption model by treating the quadrotor as a single propeller.
This modeling limitation is imposed by the available power sensors on board most quadrotors.
Typically, a power sensor can only report a total current draw, or a total power, for all
motors. Motor rotational speeds in revolutions-per-minute (RPM) may be available, but
RPM readings can only be an indirect indication of the power distribution among motors.
A more detailed multi-propeller model cannot be calibrated.

Our model decomposes the consumed power into three components, namely induced
power (Pi), profile power (Pp), and parasite power (Ppar) (Figure 3.2). The induced power (in
blue) produces thrust by propelling air downward. The profile power (in yellow) overcomes
the rotational drag encountered by rotating propeller blades. The parasite power (in red)
resists body drag when there is relative translational motion between the vehicle and wind.

Figure 3.2: Power consumption components of a multi-rotor UAS.

In this section, we present the model from first principles. The model is similar to the
one presented in [57] with minor modifications. The model is summarized at the end to list
the parameters to be identified experimentally.



CHAPTER 3. POWER CONSUMPTION MODEL 30

3.2.1 Induced Power

We base our modeling of induced power consumption on actuator disk theory [57]. Here we
are only concerned with the vertical flow, which is assumed to be uniformly distributed over
the propeller disks, inviscid, incompressible, and irrotational. Figure 3.3 shows the control
volume (CV) of the air mass around the quadrotor during vertical flight. The quadrotor’s
propellers divide the air mass into two parts. The boundaries of interest are indicated by
numbers i = {0, 1, 2,∞}. Let

• pi be the pressure at each boundary.

• Vi be the vertical speed at each boundary.

• T be the total thrust.

• A be the total propeller area.

• ρ be the density of air.

• ṁ be the mass flow rate.

Figure 3.3: Control volume (CV) of the air mass of interest.

We also define V := V1 = V2 and p := p0 = p∞.
After some simple derivations, we obtain the analytical expression for the idealized in-

duced power ((3.1)). See Appendix C for details.
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Pi = TV = T
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√ T

2ρA
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2

)2

+
V0

2

 (3.1)

Since the CV is moving together with the quadrotor, and air is at rest at boundary 0,
the vertical speed of the vehicle Vz is the same as the speed at boundary 0, or Vz := V0.
In addition, to account for the deviation between the idealized uniform air flow and actual
flow, as well as motor efficiency, we multiply the equation by a scaling factor k1 ∈ [0, 1] to
the whole expression, which yields the first equation in (3.8), with k2 defined in Table 3.1.

Lastly, note that rotor efficiency is generally improved for helicopters in horizontal flights.
This effect is called translational lift [40]. In our experiments, we observed small but no-
ticeable power reduction for such flights. However, as was mentioned before, the Glauerts
induced velocity model [68] commonly used in helicopters could not fit the data properly
due to the 4-rotor configuration of a quadrotor. Therefore, we modeled it by introducing a
pseudo-lift force (L) term defined by equation (3.2), shown as a gray-dashed arrow in Figure
3.5. Equation (3.2) is derived by treating the whole UAS as an airfoil, similar to a fixed
wing aircraft. We further assumed that L is only a function of airspeed (Vair), and set the
coefficient c6 to zero, to further simplify the thrust calculation described in Section 3.2.4.

L = c5(Vaircosα)2 + c6T

c5 := NcclρR/4, c6 := k3NcclρR
3/6 ≈ 0

(3.2)

where cl is the lift coefficient.

3.2.2 Profile Power

We derive the profile power consumed by a rotating rotor blade from blade element theory.
Figure 3.4 shows an infinitely small section of a full rotor blade of radius R at a radial
location r < R. Then the linear speed of the blade at location r for rotor i = {1, 2, ...,M} is
Vi(r) = Ωir, with Ωi and M being the angular speed of each rotor and the total number of
rotors, respectively. Assuming small angles, we can obtain the profile power for the ith rotor
in hover mode by integrating the drag force Fp,i along the blades.

Pp,hover,i = N

∫ R

0

dD = N

∫ R

0

Fp,iVi(r)dr

= N

∫ R

0

(
1

2
cdρ (Ωir)

2 c

)
(Ωir) dr

=
NccdρR

4

8
Ω3
i

(3.3)

where
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• N is the total number of blades in a single propeller.

• cd is the drag coefficient of the blade.

• c is the blade chord width.

Figure 3.4: Diagram of a quadrotor propeller, with a section view of a blade showing the
infinitesimal forces.

In horizontal flight, a similar procedure shows that the profile power becomes

Pp,i = Pp,hover,i(1 + µ2
i )

µi =
Vaircosαi

ΩiR

(3.4)

where

• µi is the advance ratio for propeller i.

• Vair is the horizontal airspeed.

• αi is the angle of attack of the propeller disk i.

For a multi-rotor UAS, it is common to assume that the thrust generated is proportional
to the angular speed squared, or Ti = k3Ω2

i , where k3 is a scaling factor converting from
rotor angular speed Ω to thrust T . In addition, all angles of attack are identical, or α := αi,
for i = {1, ...,M}. Then the total profile power is

Pp =
M∑
i=1

Pp,i =
M∑
i=1

(
NccdρR

4

8
Ω3
i (1 + µ2

i )

)

=
M∑
i=1

(
NccdρR

4

8

(
Ω3
i + (Vaircosαi/R)2Ωi

))
≈ c2T

3/2 + c3(Vaircosα)2T 1/2

(3.5)
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The last approximation lumps all M rotors into a single rotor. Hence the second equation
in (3.8), with c2 and c3 defined in Table 3.1. From [57], the second term in (3.5) contributes
very little, so we assume c3 = 0 empirically, to simplify the identification process.

3.2.3 Parasite Power

The parasite power is obtained by assuming that the body drag (D) is proportional to
airspeed (Vair) squared.

Ppar = DVair =
1

2
CdρAquadV

3
air (3.6)

where

• D = c4V
2
air is the drag force.

• Cd is the drag coefficient of the vehicle body.

• Aquad is the equivalent cross-sectional area of the vehicle when against wind. We
assumed it to be a constant.

Equation (3.6) is re-written and summarized in the third equation in (3.8), with c4 defined
in Table 3.1. In general, Cd and Aquad are complex functions of the vehicle geometry and
flight direction, making c4 hard to identify.

3.2.4 External Forces at Steady State

In all the experiments, we only extract data when the UAS is at steady state (in force
equilibrium). Figure 3.5 shows all the external forces, where

• L is a lift term introduced to model the translational lift effect.

• D is the parasite drag.

• α is the angle of attack.
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Figure 3.5: The UAS is under force equilibrium in horizontal and vertical directions.

Therefore, the thrust at steady state is computed from

T =
√

(mg − L)2 +D2 (3.7)

Since the lift L is a function of thrust T , as is shown in equation (3.2), we assumed c6

to be zero (see Section 3.2.1), to avoid solving for thrust T with a complicated quadratic
equation. When the UAS is hovering or ascending/descending slowly, the thrust reduces to
gravity, or T = mg.

3.2.5 Model Summary

The power consumption model is summarized in equation (3.8). The analytical expressions
of the parameters are shown in Table 3.1.

Pi(T, Vz) = k1T

Vz
2

+

√(
Vz
2

)2

+
T

k2
2


Pp(T, Vair) = c2T

3/2 + c3(Vaircosα)2T 1/2

Ppar(Vair) = c4V
3
air

(3.8)

Vair = ||V air|| = ||V ground − V wind||

T =
√

(mg − (c5(Vaircosα)2 + c6T ))2 + (c4V 2
air)

2

where

• V air,V ground,V wind are the horizontal air velocity, ground velocity, and wind velocity,
respectively.
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• k1, k2, c1, c2, c4, c5 are parameters to be identified in experiments.

When hovering (Vz = 0), the induced power is reduced to

Pi,hover(T ) =
k1

k2

T 3/2 4= c1T
3/2 (3.9)

Table 3.1: Analytical Expressions for the Parameters

parameter analytical expression

k1 constant ∈ [0, 1]

k2

√
2ρA

c1 k1/k2

c2 k1.5
3 NccdρR

4/8

c3 k0.5
3 NccdρR

2/8 ≈ 0

c4 CdρAquad/2

c5
NcclρR

4

c6
k3NcclρR

3

6
≈ 0

For a typical helicopter, The three power components account for more than 95% of the
total power consumed [57]. For a multirotor, we expect a similar rotor power contribution.
The remaining would be consumed by the autopilot electronics. The rotor interference effect
is not considered because there is no propeller disk overlapping for multi-rotor UAS [57].
The question in doubt is how much each individual power component contributes to the
total power, which we address in Section 3.3.
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3.3 Model Identification by Experiments

Figure 3.6: The test sites at the Richmond Field Station. Experiment 1 and 2 were performed
at the red area, while experiment 3 was at the yellow area.

To identify the unknown coefficients, we perform three simple experiments, namely hover,
steady-state ascend/descend, and cyclic straight-line missions, on an IRIS+ from 3D Robotics
[1]. From equation (3.8) and (3.9), the power components are super-linear functions of pay-
load and airspeed. Thus, we will focus on these two important factors. To minimize the
effect of wind, the experiments were performed in a field partially surrounded by plants at
the Richmond Field Station [104]. Figure 3.6 shows the site configuration and highlights the
two test areas.

In each experiment, the total power draw is computed by multiplying voltage and current
measurements from the onboard power module. The ground speed and Euler angles from
GPS and IMU are computed by an extended Kalman filter (EKF) in the autopilot. The
angle-of-attack α is computed from roll (φ) and pitch (θ) angles from equation (3.10).

α = cos−1(cosφ cos θ) (3.10)

The airspeed is directly measured from a pitot tube with a 4525DO digital differential
pressure sensor [133]. To ensure the airspeed measurement is taken horizontally in our
testings, the pitot tube is mounted on a 3DR0654 camera gimbal (Figure 3.7). The self
weight of the IRIS+ with the gimbal and pitot tube assembly is mg = 15.5N . All data is
collected at 10Hz. For consistency, each experiment is repeated three times.
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Figure 3.7: An IRIS+ with the airspeed sensor attached to a camera gimbal.

The data collected from the experiments and the scripts written to perform the system
identification and validation are hosted in BitBucket repository [132]. Interested readers are
encouraged to download the data for other research. In the following, we discuss the three
experiments in details.

3.3.1 Experiment 1: Hover

In this experiment, the IRIS+ UAS is loaded with different payloads to hover (Figure 3.8).
A total of 13 data points were collected from the vehicle. The total self weight with payload
ranges from 14.3N to 24N , close to the handling limit of the vehicle. The total power is given
by equation (3.11). Figure 3.9 shows a least-square (LS) fit, giving c1 + c2 = 2.84(m/kg)1/2.

Pexp1 = Pi,hover(mg) + Pp(mg, 0) = (c1 + c2)(mg)3/2 (3.11)

Figure 3.8: IRIS+ hovering with different payloads.
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Figure 3.9: Least square fit of IRIS+ hovering with different payloads.

3.3.2 Experiment 2: Steady-state ascend/descend

In this experiment, the IRIS+ UAS is commanded to ascend and descend at constant vertical
speed of Vz = 2.5m/s between 0m and 100m altitude without payloads (Figure 3.10). This is
the default maximum ascend and descend rate set by the ground station. Further variations
on the vertical speed is unnecessary because the difference in profile power is too small to
observe, and we already have enough data to uniquely solve the equations. The total power
is given by equation (3.12). The measurement is shown in Table 3.2. The reported values
are averages of the time-series data at steady state. The standard deviation (stdev) is also
shown for comparison purpose. Together with Experiment 1, we have four equations (hover,
ascend, descend, and c1 = k1/k2), and four unknown parameters (k1, k2, c1, and c2). The
identified parameters are shown in Table 3.3. Note that the value of c1 + c2 = 3.11. It is
slightly larger than the one reported from Experiment 1 but still acceptable (∼ 10% error),
given the limitations on measurement accuracy and possibly other unknown disturbances.

Pexp2 = Pi(mg, Vz) + Pp(mg, 0) (3.12)
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Figure 3.10: Steady-state ascend and descend altitude trajectory.

Table 3.2: Data from Experiment 2

scenario vertical speed
[m/s]

power (avg.)
[W]

power (stdev)
[W]

ascend 2.5 180 6.3

hover 0 164 1.7

descend -2.5 150 4.9

3.3.3 Experiment 3: Cyclic straight line

The goal of this experiment is to quantify the effect of parasite drag. In this experiment,
the vehicle self weight with gimbal and pitot tube is mg = 15.5N . The total power is given
by equation (3.13), with the thrust T , lift L, and drag D defined by equation (3.7). The
parameter c3 is assumed to be 0 to simplify the identification process (Section 3.2.2).

Pexp3 = Pi(T, 0) + Pp(T, Vair) + Ppar(Vair)

= (c1 + c2)T 3/2 + c3(Vaircosα)2T 1/2 + c4V
3
air

≈ (c1 + c2)T 3/2 + c4V
3
air

(3.13)
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Figure 3.11: The cyclic straight line mission.

The mission was setup in Mission Planner [80] and performed by the autopilot au-
tonomously. The IRIS+ was commanded to follow a 345-meter-long straight-line path back
and forth between two waypoints for 3 to 5 times (Figure 3.11), with a 20-second hovering
duration after reaching the waypoints. In each test, the UAS was commanded to follow
a different desired horizontal ground speed Vdes, ranging from 1m/s to 25m/s with 1m/s
increments.

The test site is the highlighted road in yellow shown in Figure 3.6. During the tests, the
wind was found blowing almost completely along the road. Therefore, we can safely ignore
the power incurred due to cross wind (perpendicular to the flight directions). This treatment
is necessary because pitot tubes can only measure airspeed in the longitudinal direction. The
weak cross wind component makes the collected flight data suitable for system identification
purpose. When using the model in flight planning, we use wind field data, so both the
longitudinal and lateral components of wind are considered, and the power estimate is valid.

Figure 3.12 shows a high-speed test at Vground = 20m/s. One forward and backward
flight cycle is highlighted in red to illustrate the effect of wind. We focus our attention on
the first half of the highlighted cycle, from 30s to 50s. Note that although the IRIS+ was
commanded to fly at 20m/s, the actual ground speed could only reaches up to 10m/s in
this half cycle, while the airspeed in the other half cycle reached 20m/s. Therefore, the
IRIS+ was at first flying against, and later along, very strong wind. For safety reasons, the
autopilot limited the maximum tilting angle, α in our case, to be 45◦, which implicitly set a
threshold on the maximum obtainable airspeed. The strong parasite drag exerted by wind
cost the IRIS+ an additional 100W to overcome compared to hovering.
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Figure 3.12: Time history of ground speed, airspeed, and power fora 20m/s high speed test.

Figure 3.13: Power vs. airspeed data and LS fittings.
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The test data and model identification results are summarized in Figure 3.13. The
horizontal axis is the measured airspeed along the flight direction. The power consumption
data was sampled at hovering and steady-state traveling. The mean and 95% confidence
intervals of the sampled data points are shown in dashed lines. A least square fit is performed
to the data using equation (3.13), which yields the value of c4 and c5 in Table 3.3. Note
that the power consumption stays essentially constant for airspeed less than 10m/s. The
standard deviation of the data at different airspeed ranges from 10 to 20W .

Table 3.3: Identified Parameters

parameter value

k1 0.8554

k2 0.3051(kg/m)1/2

c1 = k1/k2 2.8037(m/kg)1/2

c2 0.3177(m/kg)1/2

c3 ∼ 0

c4 0.0229kg/m

c5 0.0154kg/s

c6 ∼ 0

When the airspeed is between 8 and 12m/s, we observed slight power reduction due
to increase in flow efficiency (Figure 3.5). We modeled this phenomenon by introducing a
pseudo “translational lift” term L. With the identified parameter c5, L is 2.5N at 10m/s
airspeed.

Our model has several advantages over the traditional polynomial fittings shown in Figure
3.13. First, our model is more accurate in the current scenario. Observe that polynomial
fittings of degree 2 or 3 produce inadequate predictions at hovering and high speed. A
4-degree polynomial gives a much better fit, but the region with higher motor efficiency
(Vair > 8m/s) is still deviated more from data mean compared to our model. Second, our
model has less parameters. In this experiment, our model only needs 3 coefficients, including
(c1 + c2), c4, and c5, compared to 5 parameters for a 4-degree polynomial of similar accuracy.
Lastly, our model is able to extrapolate. This point is elaborated in Section 3.4.2.

The major difference between our model and the helicopter literature is that we model
the “translational lift” differently (Section 3.2.1). In the helicopter literature, the Glauerts
induced velocity model is commonly used. However, it is only valid for a single propeller
helicopter. The best model identification using this model is presented in Figure 3.14b.
Observe that the total power was underestimated in low-speed regions and overestimated in
high-speed regions. The reason is that the induced power component in the dashed red line
is overestimated in the high speed region. Figure 3.14a shows the component break down
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in our model. Note that the induced power was able to decrease to the proper value. The
reason is that we model the lift drop explicitly as a pseudo-lift term. The parasite power
and the profile power are very similar in both models.

(a) The proposed model.

(b) Glauerts induced velocity model.

Figure 3.14: Model accuracy comparison and power component breakdown.
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Figure 3.15: Histograms of the identified parameters in Experiment 3.

To verify the model robustness, we also performed bootstrapping on the identified param-
eters. Specifically, we repeatedly re-sampled the input and output data, including airspeed,
angle-of-attack, and power, with replacement, and re-optimized the least-square errors. This
re-sampling and re-optimization process is performed 100, 000 times, to generate probabilis-
tic distributions of the identified parameters (c1 + c2), c4, and c5 (Figure 3.15). In all three
cases, the parameters looks Gaussian with a sharp mean and small variance, indicating that
the parameters are robust to data re-sampling.

3.4 Model Validation

In this section, two experiments are performed to validate the model. First, we test the
model accuracy against different airspeed in a general flight. Second, we test the model’s
extrapolation capability when flying at different payload.
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3.4.1 Airspeed Validation

Figure 3.16: The validation experiment is a rectangular loop at 70m AGL. The waypoints
are shown as red squares, and the recorded flight path in blue is overlaid with the desired
path in black.

The proposed power consumption model at steady state was validated by a separate exper-
iment (Figure 3.16). The UAS was first commanded to ascend to 70m above ground level
(AGL), then complete a few rectangular loop at constant altitude, and finally land. At each
edge of the loop, the UAS was commanded to travel at three different ground speeds, namely
10m/s, 15m/s and 20m/s. The altitude is significant higher than Experiment 3, but it is
necessary to ensure obstacle-free flights. We only present validations for the horizontal loops,
neglecting the take-off and landing phase because they were not completely autonomous.

The validation results from a 3-loop test are presented in Table 3.4. The first column gives
the loop number in this flight. The second column lists the energy computed from voltage
and current data from the power module. The third column shows the energy computed
from the proposed power consumption model with measured airspeed and angle-of-attach
as inputs. We do not use the desired trajectory for energy computation because the actual
speed deviates from the desired speed quite a bit. One reason is that the wind speed at
this altitude is much larger than close to the ground. The last column shows the percent
differences between measurements and model simulations. Thanks to the direct airspeed
measurements, percent errors in all three loops are within 5%.
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A time history comparison between the data and model is presented in Figure 3.17. Two
loops are highlighted in different colors. A major difference between the data and model is
that the data contains a lot of spikes. This is because our model only captures the steady-
state behavior, while the IRIS+ actually consumes more or less energy when accelerating
or decelerating. But on average, the energy differences cancel out, resulting in the small
percent error in Table 3.4. Other errors could be caused by unmeasured cross-wind gusts.

Table 3.4: Validation Results

Loop
#

Energy
from Mea-
surement

[kJ]

Energy
from

Model
[kJ]

% Dif-
ference

1 14.6 15.2 4.5%

2 15.2 15.5 1.6%

3 15.0 15.6 4.0%

Figure 3.17: The validation experiment is a rectangular loop at 70m AGL. The waypoints
are shown as red squares, and the actual path in blue is overlaid with the desired path in
black.

3.4.2 Payload Validation

Our model also considered payload, or vehicle weight, as a model input. Thus, we performed
Experiment 3 again for a heavier payload (mg = 18.5N), to observe the extrapolating
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capability of our model. The power from the collected data and the model are shown in
Figure 3.18 at various airspeed. Observe that at low airspeed (≤ 10m/s), the model over
predicts the power consumption, but at higher airspeed (> 10m/s), the model matches the
data mean really well.

The payload validation shows an additional advantage of our model over polynomial
fittings. Our model is capable of predicting power at different payloads, a benefit inherited
from first-principle modeling. However, similar capability in polynomial fittings can only be
achieved by additional experiments, to generate a set of curves for different vehicle weights,
and interpolate the results in between.

Figure 3.18: Results comparing the data and model prediction for a different payload in a
range of airspeed.

3.5 Model Simulation

In this section, we illustrates three factors, namely vehicle speed, altitude, and regional
variations, affecting the energy consumption in a straight line scenario (Figure 3.19). The
UAS flies a one-way or round trip between two points A and B with a fixed distance d, with
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constant wind speed Vwind. For simplicity, we only focus on the cruising stage of the trips
with the following parameters.

m = 2kg d = 10km

Figure 3.19: Setup of the simple straight line scenario.

3.5.1 Optimal Speed

In commercial aircraft, it is well-known that an airplane optimizes fly speed to minimize
fuel burn. For example, the fuel burn per mile is minimized when the ratio C

1/2
L /CD is

maximized, where CL and CD are the lift and drag coefficients, respectively. The first
scenario explores the optimal speed of a multi-rotor UAS. In this case, the UAS is flying
without wind (Vwind = 0). Therefore, ground speed is the same as airspeed (equation 3.14).
For simplicity, we will only use ground speed Vground, i.e.,

Vground = Vair (3.14)

The simulation result for a one-way trip without wind is summarized in Figure 3.20.
The plot indicates that there is an optimal ground speed, V ∗ground = 17.2m/s, minimizing
the total energy consumption at the cruise phase. When traveling below V ∗ground, the UAS
spends more energy on hovering. In the extreme case when Vground = 0, the vehicle consumes
an infinite amount of energy. When traveling above V ∗ground, the UAS spends more energy
on overcoming the parasite drag. In the extreme case when Vground =∞, it takes an infinite
amount of energy to the destination. We use this insight to develop the speed optimization
procedure in Chapter 2.
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Figure 3.20: Energy vs. ground speed plot for a one-way trip without wind.

3.5.2 Altitude Variation

In commercial aircraft, engine efficiency becomes higher as altitude increases, because air
density is lower. In the second scenario, we would like to investigate the energy variation
due to altitude. Unlike commercial aircraft, UASs fly at low altitude, and air density does
not change much with respect to altitude. But wind speed vary dramatically in this altitude
range. Therefore, for low-altitude UAS flights, the determining factor in altitude variation
is the vertical wind speed profile.

Figure 3.21 shows two empirical vertical wind profile fittings. The data is the averages
measured from the Walsenburg South site by the Colorado Anemometer Loan Program at
the Colorado State University from 2010 to 2012 [56]. One fit uses a log-law profile, and
the other uses a power-law profile [89]. The deviation between the two curves is small. We
simply use the average of them to perform the energy computation.

To assess the effect of vertical wind profile, we computed the round-trip energy consump-
tion when the UAS is flying along or against wind at two representative altitudes, with the
ground speed defined in equation (3.15). It is chosen such that the UAS is flying at airspeed
Vair ≈ 13m/s and thus the power is similar in both cases.
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Figure 3.21: Empirical vertical wind speed profile from data.

Vground =

{
21m/s when along tailwind

5m/s when against headwind
(3.15)

Table 3.5: Energy consumption of a straight-line round trip at different altitudes with the
vertical wind profile defined in Figure 3.21.

Altitude
[m]

Along wind
[kJ]

Against
wind [kJ]

200 124 538

100 127 526

The data reflects that the UAS consumes less energy when against headwind at lower
altitude (100m), and when along tailwind at higher altitude (200m). Therefore, it is advan-
tageous to fly low when against headwind and fly high when along tailwind. We use this
observation in Chapter 2 to select the optimal flight altitude.

3.5.3 Weather and Regional Variation

The temperature and humidity difference due to weather or regional variation can affect
airplane flights significantly. In most helicopters flying at low altitude, the difference in
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performance on a cold, dry winter day is very noticeable and much better than on a humid,
hot summer day. However, as the airspeed increases, aerodynamic drag becomes significant,
and fly high is preferred to lower the air density and thus drag. Air density plays the key
role in this trade-off.

In this scenario, we explore the energy variation due to regional difference. Specifically,
the change of air density due to temperature and humidity. The parameters in equation 3.5
are functions of air density. The air density is low when it is hot and humid, and high when
it is cold and dry.

Figure 3.22: Power consumption curve of an IRIS+ at Vair = 5m/s as a function of air
density, or temperature and humidity.

At an airspeed Vair = 5m/s, we vary the air density to include a range of extreme weather
conditions, and simulate the power consumption plot in Figure 3.22. The total power stays
almost constant because the induced and profile decreases as air density increases, while the
opposite relation holds in parasite power. Intuitively, as the air gets thinner, the propellers
consume more energy to maintain hovering, but the aerodynamic drag also become smaller.
The net effect is that they are canceling each other out, resulting in a constant power curve.
At higher airspeed, e.g. faster than 15m/s, drag will dominate, and thus hot and humid
weather is preferred. Otherwise, at lower airspeeds or hovering, cold and dry weather is more
desirable. Further experiments is necessary to validate this result. This is left as future work.
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Chapter 4

Optimal Trajectory Generation

4.1 Introduction

In this chapter, we formulate the optimal control problems to generate 4D trajectories with
either minimum energy or time under the influence of wind and static obstacles. To motivate
the work, we first review the navigation system and algorithms in current UAS autopilots
and the robotics literature in Section 4.1.1 and 4.1.2. We summarize our contribution at
the end of the section. Then, we formulate the general optimal control problem in Section
4.2. The problem is simplified to a minimum energy problem and a minimum time problem
with fixed ground speed or fixed airspeed in Section 4.3. Next, in Section 4.5, we discuss
the environmental data necessary for the optimal routing computation. Finally, in Section
4.6,we simulate several scenarios to illustrate the obstacle avoidance capability as well as the
energy/time optimality under wind.

4.1.1 Current Path Generation Process in UAS Autopilots

Similar to aviation, we need to generate 4D flight trajectories, including 3D waypoint position
and the corresponding timestamps, to estimate the energy demand. Currently, the navigation
system in commercial or open source UAS autopilot defines a sequence of waypoints for the
UAS to follow. Figure 4.1 shows two ways to define waypoints in Mission Planner for
ArduPilot [80]. The pilot can either define sequential waypoints on a map manually (Figure
4.1a) or draw a polygon to let the ground station compute a sweep pattern (Figure 4.1b).
During the flight, the ground station smooths the waypoint sequences by fitting a spline.
The UAS then flies the waypoints smoothly (Figure 4.2).

However, this mode of navigation is not desired in many challenging flights. First, this
approach provides no obstacle avoidance guarantee when the UAS is flying at low altitude.
It imposes a high level of autonomy requirement on the UAS to avoid obstacles such as
buildings and towers in real-time. With the size and payload capacity of many UASs, this
expectation is unrealistic. In addition, the flight altitude is usually referenced from a home
waypoint, instead of altitude above ground level (AGL). This is because the map is usually



CHAPTER 4. OPTIMAL TRAJECTORY GENERATION 53

(a) Waypoint sequence. (b) Sweep pattern.

Figure 4.1: Path definitions in Mission Planner, a ground station software for ArduPilot.

Figure 4.2: Waypoint path and actual flight path smoothed by spline.

2-dimensional and does not contain terrain altitude information. If there were a cliff in
front, the UAS may crash. Our trajectory generation approach addresses this problem by
computing routes on an elevated virtual terrain surface post-processed from digital elevation
models (DEMs). The paths are guaranteed to consider terrain variation and other mapped
static obstacles.

Second, straight line routes in general do not optimize energy consumption or travel
duration under the influence of wind, which in certain cases could be very significant, as we
shall see in Section 4.6.2. For example, if the UAS flies in a straight line oriented completely
against very strong wind, its power draw can increase dramatically, and the flight duration
can be reduced significantly. In addition, flying against high wind can reduce the ground
speed significantly, and thus increases the flight duration. Our routing algorithm (Section
4.3.2) addresses this problem by considering the energy or time cost as a function of the
navigation direction. The paths are guaranteed to consume the least amount of energy or
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flight time.

4.1.2 Path Planning in Robotics

In robotics, there is a rich literature in path and trajectory generation. Many research efforts
on UAS path planning are summarized in [38, 25]. In [78, 114, 134], the trajectory generation
problem was formulated as Mixed-Integer programs. The quadrotor UAS is modeled as a
rectangular prism, and it navigates through an environment with convex obstacles. The
condition that the prism does not collide with an obstacle at a certain time is enforced
by binary slack variables. Although the computation time to generate the minimum-time
trajectory is long, the first feasible solution can be found very fast.

There are at least two reason why this approach is not a good idea for UAS navigation.
First, the number of binary variables increases exponentially as the number of obstacles
rises. Terrain can have very complex geometry, and if we model terrain as a fine mesh,
the number of binary variables will explode, and the integer program becomes intractable.
Second, there is no mechanism on handling wind. Under strong wind, the feasibility of
these trajectories is questionable. In our approach, the routing algorithm is very efficient,
with a computational complexity of O(N log(N)) where N is the number of vertices in the
terrain model. More importantly, it models the effect of wind in the cost function (Section
4.3.2). Strong wind above a certain threshold is considered infinitely costly and are avoided
automatically (Section 4.3.5).

A second approach is potential field [51], which is computationally fast but non-optimal
and incomplete, meaning that there is no guarantee to reach the destination. Therefore, this
approach is not feasible in our application. Another type of approach is heuristic-based, such
as A* and D* [34]. This type of algorithms is fast because they keep track of a heuristic cost
guiding to the destination. However, the cost does not take into account fly directions and
thus cannot account for wind.

Lastly, there are wave-front-propagation-based approaches. One example is the classical
Dijkstra’s algorithm. It produces shortest paths in graphs. However, the network solution
from the algorithm cannot distinguish between the various Manhattan paths of equal costs.
This inconsistency issue with the underlying continuous problem is explained in detail in
[115]. The Fast Marching method (FMM) is introduced in [115] to address this problem.
It directly approximates the solution of the underlying partial differential equation through
consistent numerical approximations. However, FMM can only handle isotropic problems
in which the cost is independent of propagation direction. In the presence of wind, the
energy or time cost can become anisotropic, or they changes as a function of the navigation
direction. The anisotropic property renders the FMM inappropriate for our problem.

To handle anisotropic costs, another numerical algorithm called the ordered upwind
method (OUM) is developed [116]. Unlike the numerical schemes in Dijkstra’s algorithm
or the FMM, the OUM formulates a new numerical scheme which iteratively search for the
optimal cost in different directions. But as sacrifice, the time it takes to update a single
vertex is much longer. Nevertheless, the overall computational complexity is still N log(N).



CHAPTER 4. OPTIMAL TRAJECTORY GENERATION 55

In [31], the author presents an application of the OUM on guiding UAS through tornadoes.
The cost in this work is travel time in wind. Precipitation regions are modeled as obstacles
with infinite cost. However, they only apply OUM in an idealized flat surface without terrain
information, and the cost considered is limited to time.

Our main contribution in this work is to formulate new energy and time costs relevant
to UAS missions as functions of wind. The new costs are mostly anisotropic and have to be
solved by the OUM. The major innovation is on the cost profile design, which we explain in
Section 4.3.2.

4.2 The General Energy Optimal Control Problem

To compute the minimum cost trajectory in a trip, we formulate a fixed end-point free-end-
time optimal control problem in equation (4.1).

The cost function J in equation (4.1a) is a time integral of infinitesimal costs c(t) at
the cruising stage. The decision variable is the time sequence of air velocity V air(t). The
problem includes several constraints. First, equation (4.1b) defines the dynamic constraint.
It says that the ground velocity V ground , is the sum of the air velocity V air and wind velocity
V wind. The state x is the 3D position of the UAS. Equation (4.1c) defines the feasible region
Ω to avoid static obstacles. We define it by digital elevation models (DEMs) in Section 4.5.1.
In addition, we have an initial condition x0 (equations (4.1d)) and a terminal condition xf
(equation (4.1e)), representing the origin and destination, respectively. Lastly, there is a
limit on maximum airspeed Vmax set by vehicle performance (equation (4.1f)), and possibly
a constraint on ground speed Vg,max (equation (4.1g)) set by regulation agencies such as the
Federal Aviation Administration (FAA).

min
V air

J =

[∫ T (x0,V air)

0

c(t)dt

]
(4.1a)

s.t : ẋ(t) = V ground = V air + V wind (4.1b)

x(t) ∈ Ω (4.1c)

x(0) = x0 ∈ Ω (4.1d)

x(T ) = xf ∈ Ω, T ∈ (0,∞) (4.1e)

||V air|| ∈ [0, Vmax] (4.1f)

||V ground|| ∈ [0, Vg,max] (4.1g)

where

• J is the cost to be minimized.

• c(t) is the stage cost per unit time, which is a function of time.

• V ground,V wind are the ground and wind velocity, respectively.
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• Ω is the feasible region inside which the sUAS can fly.

• V air is the horizontal air velocity, or our control variable.

• x0,xf are the origin and destination of a trip, respectively.

• T is the terminal time, which is not fixed in our formulation.

• Vg,max is the maximum ground speed.

This problem is in general difficult to solve because both the flight path and the vehicle
speed are decision variables. In Section 4.3, we fix the airspeed or ground speed to simplify
the problem, and solve for the optimal path via numerical algorithms. Solution to the general
problem (4.1) is left as future work.

4.3 The Simplified Optimal Control Problems

As mentioned in Section 4.2, the optimal control problem (4.1) is hard to solve because we
need to optimize both vehicle speed and flight path simultaneously. In this section, we fix
the ground speed or airspeed and optimize the flight path. The method developed is used
to jointly optimize the two in Chapter 2.

This section is organized as follows. First, we state our assumptions to mathematically
formulate the problem. Then, introduce the concept of cost profile. Third, we introduce
simplified minimum energy and minimum time cost function in equation (4.1). We show
that the formulation reduces to a time-invariant Hamilton-Jacobi-Bellman (HJB) equation.
Lastly, we solve the formulated problems with the Ordered Upwind Method (OUM).

4.3.1 Assumptions

The following assumptions are made to develop problem (4.1).

• A complete mission consists of three segments: a vertical take-off segment, a cruise
segment at fixed altitude AGL, and a vertical landing segment. In the optimal control
problem, we only compute optimal trajectories for the cruise segment inside an elevated
3D surface (Section 4.5.1), which is not necessarily horizontal. The take-off and landing
segments are computed separately and not considered in the optimization.

• The vehicle is mostly at steady state, enabling the application of the power consump-
tion model developed in Chapter 3 to formulate the energy cost function. This as-
sumption is reasonable because accelerating maneuvers usually only occupy a small
portion of the entire trip.
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• The trip duration is short enough for the wind field V wind(x) to be time invariant. We
also assume it is deterministic. For multi-rotor UAS, this assumption is reasonably
valid for flight durations up to 30 minutes.

Lastly, to make the problem solvable, we need certain assumptions on ground speed or
airspeed, which we discuss in the following section.

4.3.2 Cost Profile Design

We start by re-writing the cost function as a line integral parametrized by s, so that the cost
propagates in space instead of time.

J =

∫ T

0

c(t)dt =

∫ sf

s0 C

c(t)

(
dt

ds

)
ds =

∫ sf

s0 C

c(s)

Vground(s)
ds
4
=

∫ sf

s0 C

g(x(s),u(s))ds (4.2)

The cost differential g can be a function of both the state x(s) and control u(s). We
define the control variable u to be a unit vector tangential to the curve C at s along the
navigation direction. This is also the direction of ground speed V ground. The feasible control
set U is

U = {u ∈ Rn | ||u|| = 1} (4.3)

We define the cost profile set CP (x,u) in equation (4.4). It is a set of vectors with
magnitudes g(x,u) in direction u at position x.

CP (x,u) = {tug(x,u) |x ∈ Rn,u ∈ U , t ∈ [0, 1]} (4.4)

Problem (4.1) is a standard optimal control problem. In [117], this problem is reduced
to a time invariant Hamilton-Jacobi-Bellman (HJB) equation (4.5), by applying Bellman’s
optimality principle and dynamic programming. The derivation is presented in Appendix D.

min
u∈U

[(∇xV (x) · u) + g(x,u)] = 0, x ∈ Ω

V (xf ) = 0, xf ∈ Ω
(4.5)

where the value function V (x) at s is

V (x) = min
u∈U

J(x,u) (4.6)

If the cost differential g is not a function of direction u, then the cost profile is bounded
by a circle centered at x and thus isotropic. This problem can be solved by the Fast March-
ing Method (FMM) [115]. Otherwise, the cost is anisotropic. If an anisotropic cost profile
set (4.4) is convex, then we can solve for a unique viscosity solution [117] using the Or-
dered Upwind Method (OUM). Therefore, our remaining task is to design the cost profile
to be convex. The cost differential for energy and time are denoted as genergy and gtime,
respectively.
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4.3.3 Energy Cost Profile

To design the energy cost profile, we first re-write the energy differential

dE = Pdt = P

(
dt

ds

)
ds =

P

Vground
ds (4.7)

Therefore, if we set the temporal cost c(t) to be the power consumption P (t) of the UAS,
the total cost becomes the energy consumed in the cruise phase of the trip. And the spatial
energy cost genergy becomes

genergy(x,u) =
P (x,u)

Vground(x,u)
(4.8)

The numerator term P (x,u) (Section 3.2.5) and denominator term Vground(x,u) for
multi-rotor UASs are in general functions of both position and navigation direction because
of wind. To ensure the convexity of genergy(x̄,u) at a fixed point x̄, we can either make
power P or ground speed Vground constant and check the resulting cost profiles.

4.3.3.1 Constant Ground Speed

First, we can make the ground speed independent of navigation direction u. Without loss
of generality, we assume that wind is blowing along the positive x axis at point x̄, so that
V wind = [Vwind, 0]T , and the direction u makes an angle θ to wind. Therefore,

V air(θ) =

[
Vground cos θ − Vwind

Vground sin θ

]
(4.9)

To ensure that the cost profile set is convex, we need to satisfy inequality (4.10) [36].

genergy(θ)
2 + 2g′energy(θ)

2 − genergy(θ)g′′energy(θ) ≥ 0 (4.10)

Figure 4.3 shows the normalized value of the left-hand side of inequality (4.10) as a
function of θ, computed for the power consumption model with parameters in Section 3.2.5
and for a range of ground speeds and wind speeds. Observe that the values are mostly greater
than or equal to zeros, except for some values near 0 degree and 360 degrees. Regardless, we
can safely call the CP set defined by genergy convex. Figure 4.4a shows a numerical example
of the power P (x,u) affected by wind at a fixed point x̄ in every horizontal direction u in
polar coordinates. The resulting shape of CPenergy is shown in Figure 4.4b. Both shapes
looks convex.
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Figure 4.3: Convexity of energy cost profiles for a range of Vground and Vwind.

(a) P (x̄,u). (b) Energy cost genergy(x̄,u).

Figure 4.4: 2D visualization of the energy cost at constant ground speed in polar coordinate
at Vground = 10m/s and Vwind = 5m/s with wind blowing along the θ = 0◦ outward direction.

To reduce confusion and keep things simple, in the simulated examples in Chapter 2 and
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Section 4.6, we further restrict the ground speed to be independent of position, so that it is
a constant given by equation (4.11) for any flight planning task. This simplification enables
us to optimize the ground speed by iteration (Section 2.6.5). Nevertheless, more advanced
examples can actually specify a ground speed map as a function of x, but designing an
optimal ground speed map is a challenging task and out of the scope of this dissertation.

Vground = const (4.11)

4.3.3.2 Constant Airspeed

Alternatively, we can also make the airspeed independent of direction u, so that the power
consumption becomes constant at any given point x̄. Then, the energy cost element genergy(x,u)
becomes

genergy(x,u) =
P

Vground(x,u)
=

P

||V air(x,u) + V wind(x)|| (4.12)

The wind velocity term V wind(x) is assumed time invariant (Section 4.3.1). To ensure
that the cost profile defined by genergy is convex, we need to again satisfy inequality 4.10.
After some simplifications, it becomes

|V 2
air + V 2

wind + 2VairVwind cos θ| ≥ 1

2
(4.13)

In addition, to make sure that we can fly against wind, we need

Vair > Vwind (4.14)

As long as we restrict Vair to be slightly larger than Vwind, these two condition are satisfied.
If we plot the ground speed Vground(x,u) at a fixed point x̄ in wind, we obtain a polar plot
similar to Figure 4.5a. The set inside the blue boundary does not look convex. But if we
compute its inverse and multiply by the constant power term, we obtain a convex set shown
in Figure 4.5b. Therefore, fixing airspeed is feasible.
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(a) Vground(x̄,u). (b) Energy cost genergy(x̄,u).

Figure 4.5: 2D visualization of the energy cost at constant airspeed in polar coordinate at
Vair = 10m/s and Vwind = 5m/s with wind blowing along the θ = 0◦ outward direction.

Again, to keep things simple, in the simulated examples in Section 4.6, we further restrict
the airspeed to be independent of position, so that it is a constant given by equation (4.15) for
any flight planning task. This simplification enables us to optimize the airspeed by iteration
(Section 2.6.5). Nevertheless, more advanced examples can actually specify an airspeed map
as a function of x, but designing an optimal airspeed map is a challenging task and out of
the scope of this dissertation.

Vair = const

Vair > Vwind,max
(4.15)

There are two good reasons why we want to set the airspeed constant. First, it makes the
energy consumption constant given a vehicle-battery combination (Chapter 3). Therefore,
we know that the UAS will not have power failures due to excessive current draw in high wind
areas. Second, it works well with the steady-state assumption in our power consumption
model.

4.3.4 Time Cost Profile

To design the time cost profile, we first re-write the time differential

dt =

(
dt

ds

)
ds =

1

Vground
ds (4.16)

Therefore, if we set the temporal cost c(t) to be 1, the total cost becomes the time spent
in the cruise phase of the trip. And the spatial time cost gtime becomes

gtime(x,u) =
1

Vground(x,u)
=

1

||V air(x,u) + V wind(x)|| (4.17)
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The wind velocity term V wind(x) is assumed time invariant (Section 4.3.1), so that it is
only a function of position. To ensure the convexity of CPtime, we can again either fix the
ground speed or airspeed.

4.3.4.1 Constant Ground Speed

If we make the ground speed independent of navigation direction u, then genergy(x,u) at
a fixed point x̄ is a constant in equation (4.18) at any given point x̄, and the cost profile
becomes isotropic (Figure 4.18). This problem can readily be solved by the Fast Marching
Method [115]. If we further assume that the ground speed is independent of position x, the
solution becomes trivial.

genergy(x,u) =
1

Vground(x)
(4.18)

Figure 4.6: 2D visualization of the time cost at constant ground speed in polar coordinate
at Vground = 10m/s.

4.3.4.2 Constant Airspeed

If we make the airspeed independent of navigation direction u, then the power term P
becomes a constant at a fixed point x̄. Therefore, the cost profile becomes a scaled version
of (4.12). The optimal paths of the two fixed-airspeed formulations are therefore equivalent.
The minimum costs are only scales by a conversion factor between energy and time. A
visualization of the cost profile is provided in Figure 4.7. It is simply a scaled version of
Figure 4.5b.
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Figure 4.7: 2D visualization of the time cost at constant airspeed in polar coordinate at
Vair = 10m/s and Vwind = 5m/s with wind blowing along the θ = 0◦ outward direction.

4.3.5 Safety Consideration

For safety considerations, we impose infinite costs on top of the nominal cost gnominal in
regions where the wind speed exceeds a maximum threshold Vwind,max, so that the optimal
trajectory does not enter these regions.

g(x,u) = gnominal(x,u) + Iinf (||V wind(x)|| > Vwind,max) (4.19)

where the function Iinf (·) is defined as

Iinf (condition) =

{
∞, if condition is true

0, otherwise
(4.20)

4.3.6 The Simplified Optimal Control Problem

With the cost profiles defined above, we can simplify problem (4.1) to problem (4.21) by
re-writing the cost function as a line integral in terms of the cost profile element g(x,u).
The flight path is parametrized by variable s.

min
u(s)

[
J =

∫ sf

s0

g(x(s),u(s))ds

]
(4.21a)

s.t :
d

ds
x(s) = u(s) :=

V ground

Vground
(4.21b)

x(s) ∈ Ω (4.21c)

x(s0) = x0 ∈ Ω (4.21d)

x(sf ) = xf ∈ ∂Ω (4.21e)

u ∈ U = {u ∈ Rn | ||u|| = 1} (4.21f)
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Depending on the choice of the cost g(x(s),u(s)) (Section 4.3.2) in equation (4.21a),
the cost can be either energy consumption or flight duration at the cruise phase. In both
cases, the cost function depends on not only the position x(s)Vground but also the navigation
direction u(s). The control variable is the sequence of the navigation direction u in different
parametrized positions s. They are unit vectors of length 1 as is shown in equation (4.21f).
The dynamic constraint in equation (4.21b) says that the navigation direction dx(s)/ds is
the same as u(s). Lastly, we still have the feasible region (equation (4.21c)), initial condition
(equation (4.21d)), and terminal condition (equation (4.21e)).

The optimal path can be found in two steps. First, we solve the HJB equation numerically
and build an optimal cost-to-go map J∗(x) associated with a specific destination, as well
as the corresponding optimal control map u∗(x). The computation is performed backward
from the destination point to all the other points. This problem is addressed in Section 4.4.
Second, we generate the optimal paths by looking up and apply the optimal control actions
step-by-step from the u∗(x) map, from some origins to the specified destination [116].

4.4 Numerical Algorithm: Ordered Upwind Method

(OUM)

The Ordered Upwind Method (OUM) [116, 117] is an efficient algorithm to find a numeric
approximation, or an optimal cost map J̃(x), to the viscosity solution of equation (4.5), over
a discretized configuration space. In this section, we review this method.

The discretized space is divided to three types of vertices: Far, Considered, and Accepted
[117]. Figure 4.8 shows the vertex labels during the computation.

• Far - Computation of J̃ has not yet started.

• Considered - Tentative values of J̃ has assigned.

• Accepted - Finalized values of J̃ has assigned.

Then we define the following terms to introduce the algorithm.

• Accepted Front - Accepted vertices that has a Considered neighbor.

• AF - Edges made of neighboring vertices pair (xi,xj) where xi ∈ Accepted Front and
xj ∈ Considered.

• Near Front - Let xi ∈ Considered and xj,xk ∈ Accepted Front, then the near front
NF (xi) is defined as

{(xj,xi) ∈ AF | ∃x on (xj,xk) s.t. ||x− xi|| ≤ Γhmax}

with Γ being the anisotropic ratio [117].
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In the triangle (xi,xj,xk), where xi ∈ Considered and xj,xk ∈ Accepted Front, define

the minimum cost approximation Ĵxj ,xk
(xi) to be

Ĵxj ,xk
(xi) = min

λ

[
Ĵ + ∆xi g(xi,ui)

]
Ĵ := λĴ(xj) + (1− λ)Ĵ(xk)

∆xi := [λxj + (1− λ)xk]− xi

(4.22)

The high-lighted triangle in Figure 4.8 illustrates this optimization. The minimum costs
of accepted vertices xj and xk are known, and the cost of vertex x inside edge xjxk is
obtained from linear interpolation. The cost of vertex xi ∈ Considered is the sum of the
cost of vertex x and ∆xi g(xi,ui). And the optimal control u is given by the direction from
xi to x.

Then the tentative cost update for the vertex xi ∈ Considered is

Ĵ(xi) = min
(xj ,xk)∈NF (xi)

Ĵxj ,xk
(xi) (4.23)

With the definitions above, the Ordered Upwind Method is summarized as follows:

1. Start with all vertices in Far, Ĵ(xi) =∞, ∀xi ∈ Ω.

2. Move the destination vertex xf to Accepted with Ĵ(xf ) = 0.

3. Move all vertices xi adjacent to xf into Considered and evaluate the tentative cost

Ĵ(xi) from equation (4.22) and (4.23).

4. Find the vertex x∗i = argminxi∈Considered[Ĵ(xi)], move it to Accepted, and update the
Accepted Front.

5. Move all vertices in Far adjacent to x∗i into Considered.

6. Recompute the cost for all vertices xi within Γhmax from x∗i . If the newly-computed
cost is less than the previous tentative cost, then update the cost.

7. If Considered 6= ∅, then go to step 4.

Lastly, we can use equation (4.24) to attach timestamps to the generated flight path to
make it a 4D trajectory defined in NextGen.

t(s) =

∫ s

s0

ds̄

Vground
(4.24)
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Figure 4.8: Labels introduced for a general triangulated mesh to describe the OUM algo-
rithm. The color of each term matches the graphical representation.

4.5 Environmental Data

We are interested in environment data that has significant impact on our FPS. To avoid
static obstacles, we need terrain data so that the UAS knows where to fly. To estimate
energy demand, we need wind information in the flight region. In this section, we review the
current development on these environment data and compare to the requirement for UAS
flight planning.

4.5.1 Terrain Data

To avoid static obstructions such as terrain and buildings, we run the algorithms on digital
elevation models (DEM) [77]. DEMs are simply images with altitude information. After
some post-processing, they can be stored as triangulated meshes with lists of vertices, edges,
and faces. Large scale terrain DEM can be obtained from NASA ASTER GDEM2 [85]. The
horizontal resolution of the dataset is 30m horizontally, which suffices for most of the flight
planning tasks.

For UAS routing, we elevate the DEM model upward to the desired flight altitude. In our
case, this altitude is set to 150m (500ft) AGL due to the current low-altitude requirement
imposed by the FAA (Section ??). Other choices of altitude are also possible depending
on future regulation requirements on altitude limit and vertical separation. The vertical
resolution of wind data an also play a big role. Then, we smooth the surface to avoid sharp
change in altitude. It is necessary because disrupt changes in altitude may destabilize the
UAS and render it unsafe. The resulting mesh is a 3D surface on which we perform the
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routing computation. The optimal paths live inside this elevated surface, and thus will not
hit mapped static obstacles.

One draw back of this approach is that the DEM maps are not updated in real-time. If
there were unmapped new buildings, then the UASs are still prone to collisions. Therefore,
before planning, it is important to ensure to flight regions has up-to-date terrain information.
The mapping problem is not the focus of this dissertation. We only address the routing
problem assuming the terrain data is accurate.

4.5.2 Wind Data

One of the biggest challenges in UAS flight planning is the lack of wind and weather data
[64] in the low-altitude Class G airspace. Wind data at the boundary layer, or low-altitude
airspace, is commonly collected with radar or sodar-based wind profilers [30, 100]. Currently,
the best available wind forecast data is from the High-Resolution Rapid Refresh (HRRR)
radar assimilation [121]. The finest horizontal resolution is about 3km. This resolution is
too coarse because the total travel distance is small in most UAS missions, typically less
than 5km. It implies that we only have one or two wind data points to plan the routes.
Regardless of the routing methods, such low-resolution wind data fundamentally limits the
quality of the trajectory output.

Due to terrain geometry, the wind behavior at low altitude is quite complicated. Studies
have conducted on verifying the accuracy of HRRR [135], but the result does not seem good.
In addition, the infrastructure required for data collection is cumbersome and expensive.
Although the focus of this dissertation is not on improving the wind data resolution, we still
need to find a better alternative of wind data to test the routing algorithm.

In the current implementation of our flight planning system, we use the realistically-
simulated high-resolution 3D wind field from the Environmental Fluid Mechanics and Hy-
drology (EFMH) group at UC Berkeley [32]. The horizontal, vertical, and temporal resolu-
tion are 100m, 50m and 10min, respectively.

4.6 Simulation

In this section, we simulate three flight planning scenarios: one shows the obstacle avoidance
capability, the other two presents the energy and time optimality under the influence of
wind. The UAS is a 3DR IRIS+ with a 5100mAh LiPo battery. The total self weight with
gimbal and battery is 14N . In the end, we comment briefly on the implementation details
and bottlenecks.

4.6.1 Obstacle Avoidance Scenario

Figure 4.9 shows a simple minimum-energy flight planning example without wind on a 600m×
600m space with two tall buildings as obstacles and a constant slope on the ground. The
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origin is at the upper-right corner from the top view, while the destination is the lower-left
corner. The minimum-energy cost map is propagated backward from the destination to the
origin. We restrict the UAS to fly on the elevated 2D surface at 150m AGL. The computed
paths avoid the building obstacles successfully.

The UAS travels at a fixed ground speed of 20m/s. The optimal cost, or minimum
energy, to destination is about 20.8kJ at the cruise phase, or 482mAh with a 12V 3-cell
LiPo battery. The energy spent during take-off and landing can be added to obtain the total
energy consumption. In this case, assume that the UAS is flying at 150m above ground level
(AGL) at 2.5m/s vertical speed, then the energy spend on taking-off and landing is 19.8kJ ,
which yields a total of 40.6kJ , or 940mAh, for the entire trip.

Figure 4.9: Optimal energy cost map and the optimal path without wind.
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(a) Digital elevation model (DEM). The color represents altitude above mean sea level (AMSL).
In our simulations, we use the green circle as the destination, and the red stars as the origins.

(b) 3D wind field data at 141m AGL.

Figure 4.10: Terrain and wind data from the the EFMH group.
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4.6.2 Minimum Energy Scenario in Wind

As is mentioned earlier, real-time wind data collection infrastructure is largely missing,
therefore an experimental testing is not yet possible. Nevertheless, we manage to obtain
high fidelity wind data for simulation. In the following, we first describe the data briefly,
then present the simulation results.

4.6.2.1 Terrain and Wind Data

For short trips (say < 20km), high-resolution wind field is desired to obtain good results be-
cause the trip length is small (Section 4.5.2). But the best publicly available high-resolution
rapid refresh (HRRR) wind database is still too coarse (3km horizontally) for our applica-
tion [120]. Instead, we use realistically-simulated 3D wind field (27km × 27km) from the
Environmental Fluid Mechanics and Hydrology (EFMH) group at UC Berkeley [32]. The
wind field is simulated from the current stare-of-the-art large-eddy simulation (LES) model
for the atmospheric boundary layer [21]. The terrain and wind data for our simulation is
a cropped-subregion taken from 23 : 00 to 00 : 00 UTC on May 19, 2017 (Figure 4.10) at
Perdigao in Portugal. It gives horizontal, vertical, and temporal resolution of 100m, 50m and
10min, respectively. We chose wind data at about 141m AGL. Observe that the wind field
has an irregular structure inherited directly from the terrain profile. A simple polynomial
parametrization is hard to capture the irregularities.

4.6.2.2 Scenario Setup

We choose one destination and five different origins to perform the OUM computation (Figure
4.10a). We observe to choose our ground speed. The maximum and median wind speeds are
18.2m/s and 9.7m/s, respectively. The IRIS+ can fly at 20m/s based on the performance
data in Chapter 3. Therefore, we picked a conservative ground speed of 5m/s.

4.6.2.3 Result and Analysis

Figure 4.11 compares several 3D paths at 150m AGL on the XY plane. The flight distances
range from 16km to 27km. The paths in black are the minimum energy paths taken wind
into account, while the paths in gray are without considering wind. The non-wind-optimal
paths are very close to straight line paths because the vertical terrain variation (∼ 100m) is
small compared to the horizontal spatial scale (∼ 5km). But the wind-optimal paths, such
as paths #1 to #3, can be quite different from straight lines.
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Figure 4.11: Paths comparison between wind-optimal and non-wind-optimal paths.

Similar to the paths, the energy savings vary quite a bit, ranging from 2% to 40% (Table
4.1). The largest energy saving is achieved in path #2. Without considering wind, the energy
spent is 1611.7kJ , while the wind-optimal path only spends 984kJ , giving an overall saving
of 39%. In the following, we take Path #2 as an example to illustrate reasons contributing
to the large energy savings.

The time history of the energy and power consumption of path #2 is plotted in Figure
4.12. Observe that the wind-optimal path in red yields significantly lower power in several
time durations by taking advantage of wind, resulting in less energy consumption overall.

Table 4.1: Energy saving comparison between optimal paths with and without considering
wind.

Path # Consider wind [kJ] Not consider wind
[kJ]

% saving

1 845.0 1259.3 32.9%

2 984.0 1611.7 39.0%

3 1224.4 1664.7 26.4%

4 867.9 975.2 11.0%

5 768.0 750.7 2.2%
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Figure 4.12: Energy consumption comparison between wind-optimal and non-wind-optimal
paths.

Figure 4.13 explains why the wind-optimal path gives significant energy savings. First,
the algorithm tries to avoid high wind regions. In the non-wind-optimal case, the path is
almost completely against high wind, from 11 to 16.5m/s, in the entire trip, while in the
wind-optimal case, the path is mostly located in low-wind areas, from 5 to 11m/s. Second,
the UAS tries not to fly against the wind when high wind is unavoidable. At the beginning
and near the end of the trip, where strong wind is present, the wind-optimal path flies almost
perpendicular to the high wind, giving significantly smaller airspeed and power.
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Figure 4.13: The minimum energy path #2 with and without considering wind. The wind
field in gray is taken at 23 : 00 UTC on May 19, 2017 at Perdigao.

Table 4.2 shows a snapshot of the 4D trajectory with timestamps after applying equation
(4.24) to flight path #2, together with the expected energy consumption.

Table 4.2: A snapshot of the flight trajectory together with energy estimate at the cruise
phase of Trip #2.

Timestamp [hr : min : sec] Way point [m] Energy consumed [kJ]

13 : 00 : 00.0 (2200.0, 10300.0, 250.4) 0.00

13 : 00 : 03.5 (2245.8, 10278.3, 257.7) 1.74

13 : 00 : 05.5 (2272.7, 10265.3, 261.1) 2.76

... ... ...

4.6.3 Minimum Time Scenario in Wind

We simulate the same scenarios to obtain minimum time trajectories. Figure 4.14 compares
the 3D paths at 150m AGL on the XY plane. The IRIS+ can fly at a constant airspeed
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of 20m/s. The paths in black are the minimum time paths taken wind into account, while
the paths in gray are without considering wind. The non-wind-optimal paths are very close
to straight line paths. But the wind-optimal paths have shapes that are very similar to the
minimum energy paths in Figure 4.11.

Figure 4.14: Paths comparison between wind-optimal and non-wind-optimal paths.

The time savings is significant in general (Table 4.3). The largest time saving is achieved
in path #2. Without considering wind, the duration is 68 minutes, while the wind-optimal
minimum-time path only spends 34 minutes, giving a 51% shorter duration. Path #1 also
shows a 47% time savings. The other three paths also have time savings ranging from 9%
to 30%.

Table 4.3: Time saving comparison between optimal paths with and without considering
wind.

Path # Consider wind [min] Not Consider wind
[min]

% saving

1 28.06 52.96 47.0%

2 33.72 68.20 50.6%

3 44.93 65.49 31.4%

4 31.80 36.98 14.0%

5 25.45 27.86 8.6%
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The time history of the ground speed and power consumption of path #2 is plotted in
Figure 4.15. The power stays constant as expected because the airspeed is a constant. The
ground speed in the wind-optimal path is in general faster than the non-wind-optimal path.
In particular, between time 0min and 32min on the time axis, we see consistent boosts in
ground speed, which results in the time savings even when the distance is slightly longer in
the wind-optimal path.

Figure 4.15: Energy consumption comparison between wind-optimal and non-wind-optimal
paths.

Figure 4.16 shows paths comparison for origin #1 and #2 in the wind field. And again,
the time saving is attributed to avoiding and flying perpendicular to high wind regions, and
the strategy is very similar to the minimum energy case. Note that although the minimum-
energy and minimum-time paths for origin #2 are very similar, the flight times are drastically
different. This is because we are fixing the ground speed when minimizing energy, while fixing
the airspeed when minimizing time.
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Figure 4.16: The minimum time path #3 with and without considering wind in the wind
field. The wind field in gray is taken at 23 : 00 UTC on May 19, 2017 at Perdigao.

4.6.4 Implementation Details and Bottlenecks

Since there is no existing libraries available, we wrote our own implementation of the OUM
algorithm in Julia language [58]. Julia is known to be fast in scientific computing but easier
to code than C/C++. Therefore, it is ideal for prototyping our algorithm. To efficiently store
the Considered vertices, we applied a minimum heap data structure. The computation of
equation (4.22) is performed using the golden-section search algorithm [99] as recommended
in [116].

The most prominent bottleneck is in the computation time, specifically the time spent on
solving equation (4.22). Take the scenarios in Section 4.6.2 as examples. The terrain data
has a range of 27km × 27km and a 100-meter horizontal resolution, giving (270)2 = 72900
vertices in the Delaunay-triangulated mesh. The total computation time on generating the
minimum energy and time cost map are 9.7 minutes and 2.0 hours, respectively. After some
profiling, we saw that a large fraction of the time, about ∼ 50% in the energy formulation,
was spent on computing the vector norms inside the golden-section search iterations. In
the minimum time formulation, there are more iterations because the ground speed is not a
constant. To reduce the computation time, we can possibly adopt sweeping algorithms that
are parallelizable [129]. Another bottleneck is the necessity to pre-specify the ground speed
or airspeed before running the algorithm. Unless there is a better formulation of the optimal
control problem, this issue is difficult to overcome.
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Part II

In-Flight
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Chapter 5

4D Trajectory Following

In this chapter, we would like to design controllers capable of following the trajectories
defined in Chapter 4. We first review the trajectory following literature in manned aviation
(Section 5.1). Then we give an overview of the approach in Section 5.2.1. Then, we present
the controller designs in Section 5.3 and 5.4. Lastly, we present the simulation results in
Section 5.5.

5.1 Trajectory Following in Manned Aviation

After planning a trajectory, we want to make sure that the aircraft follows the trajectory
as closely as possible. Figure 5.1 shows an example of a flight plan from Delta airline. The
example plans a trip from the Seattle-Tacoma International Airport (SEA) to the Amsterdam
Airport (AMS). There are three critical information highlighted in red: waypoints (VOR) in
latitude and longitude, elapsed/remaining trip time, and consumed/remaining fuel.

Aircraft trajectory following is performed manually by pilots in manned aviation [88].
Pilots flies the aircraft in straight lines from one VOR to another, at specified ground speeds.
The pilot in command of the mission compares the time and fuel readings to the flight plan
while reaching each VOR. The ground speed and tentative schedule gets updated accordingly
to fulfill the remaining flight plan.

Unlike ground transportation, the challenge on airplane trajectory following is on posi-
tioning, or sensing, the aircraft rather than controlling it. To position the aircraft within
good accuracy, the U.S. Federal Aviation Administration’s (FAA) defines visual flight rules
(VFR) and instrument flight rules (IFR). At low altitude and under clear weather condi-
tions, we can fly an airplane solely by reference to outside visual cues, such as the horizon to
maintain orientation, nearby buildings and terrain features for navigation, and other aircraft
to maintain separation. On the other hand, without clear visual cues, commercial airlin-
ers and their pilots in Class A airspace are required to operate under IFR. In NextGen,
the FAA mandates GPS-based navigation via Automatic Dependent Surveillance-Broadcast
(ADS-B), specifically ADS-B Out, by year 2020 [92]. ADS-B Out broadcast the aircraft’s
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Figure 5.1: A flight plan example from Delta airline.

GPS information, while ADS-B In subscribes this information from nearby aircraft. The
introduction of ADS-B improves safety and efficiency in the air and on runways and reduces
costs.

However, for UASs, trajectory following has to be fully autonomous without human
interferences. Therefore, there are difficult challenges in both sensing and control. The
sensing problem in open areas is mostly resolved by the introduction of GPS and IMU.
But at low-altitudes, there are complex static and dynamic obstacles. Small UASs with
limited sensors generally cannot handle such environments trivially. We propose to avoid
static obstacles in the pre-flight stage with high-definition terrain models. Therefore, unlike
manned aviation, the trajectories will not be simple straight line segments connecting a sparse
set of waypoints. Instead, they can have curly segments with dramatic altitude variations,
which imposes great challenges in control. The UASs have to follow the planned trajectory
closely even under the uncertainty of wind and weather while maintaining safety. In this
chapter, we address the trajectory following problem of a quadrotor.

5.2 Overview

5.2.1 Definition of 4D Trajectory Following

To track the 4D trajectories generated in Chapter 4, we need to design appropriate feedback
controllers. In general, we have two strategies, namely trajectory following and path follow-
ing. A 4D trajectory is a path with timestamped 3D waypoints. In trajectory following,
we can track the time evolution of a path directly. However, for long distance travel, the
planned trajectory may not be a good representation of the true trajectory. For example,
if the UAS tried to avoid other vehicles along the flight path, then the timestamps in the
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pre-planned trajectory would be outdated. Continue to follow the outdated trajectory after
collision avoidance can be problematic since the current vehicle position can be far away
from the planned position. On the other hand, path following tracks a 3D path without
time constraints. Therefore, at each time step, the UAS re-plans a short-term 4D trajec-
tory along the path to follow. This approach can overcome the disadvantage of trajectory
following mentioned above.

In this dissertation, we would like to re-define the technical term trajectory following in
the vehicle control literature slightly to make it compatible with manned aviation. NextGen
introduces 4D trajectory, or a time-stamped 3D path, as a unifying term for both manned
and unmanned aviation. A pilot is essentially performing path following in manned aviation
because there is trajectory re-planning taking place constantly in the pilot’s mind. But there
is also a sense of time in the path because the pilot also adjusts the flying speed so that the
actual arrival time is close to the planned arrival time. Therefore, the pilot is also following
a trajectory in this sense. We would like to adopt a looser definition of a 4D trajectory as
a sequence of 3D waypoints stamped with desired speeds. This speed-stamped trajectory
definition is similar to the timestamped one if there were not significant deviation between
the actual and planned flight trajectory. In this dissertation, we use the term 4D trajectory
following to mean tracking 3D waypoints with speed commands.

5.2.2 The Proposed Control Strategy

In this Chapter, we break the 4D trajectory following problem into two levels of feedback
control (Figure 5.2). First, a high-level controller takes the cross-track and heading error
of the UAS with respect to the desired path, and generates an acceleration and a heading
command. Since the speed-stamped reference trajectories contains future information, we
can take advantage this knowledge by applying model predictive control (MPC) in the high-
level controller. It is particularly effective in reducing over-shoot when we are transitioning
to high-curvature segments. But to solve the receding-horizon optimal control problem at
a reasonable speed, we have to keep the model relatively simple. We discuss the high-level
MPC controller design in Section 5.4. By assuming the UAS is under vertical equilibrium,
we can convert the acceleration command to Euler angle commands.

Figure 5.2: The feedback controller design block diagram for 4D trajectory following.

Multi-rotor dynamics are known to be nonlinear and underactuated. The excessive com-
putation burden on handling such complications in optimization determines that we could
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not solve the full control problem solely based on MPC. Therefore, we introduce a low-level
controller to track the desired Euler angles commands by producing forces and moments, or
motor RPMs. Sliding mode control is a well-known robust nonlinear control approach. It
provides a good robustness margins to handle various uncertainties. The control laws are
analytical and thus computationally very fast. Therefore, it is the ideal low-level controller
candidate. The disadvantage is that it still requires a reasonably accurate dynamic model
and the associated model parameters of the UAS. In Section 5.3, we present a general set
of robust sliding controllers to achieve both Euler angles and translational position (XYZ)
tracking.

Lastly, upon reaching the destination, it is more effective to track a static position than
speed. Therefore, we introduced a transition to position tracking when reach the final
waypoint (Figure 5.3), to provide faster and smoother stabilization.

Figure 5.3: The finite state machine, switching between trajectory following and destination
tracking.

5.3 Low-Level Sliding Controller

In this section, we aim to design a robust low-level controller (Section 5.2.2) for a quadrotor
UAS. We first review the existing literature (Section 5.3.1) and the dynamic model (Section
5.3.2), then goes into the controller design (Section 5.3.3).

5.3.1 Literature Review

In this section, we review the quadrotor control literature. It can be divided into two classes.
The first class focuses on attitude and altitude stabilization [12, 70, 75, 13, 14], while the
second class controls the horizontal position as well [67, 137, 127]. Controlling the first class
is straight forward because attitude and altitude are directly controlled by four independent
control inputs. However, when horizontal position tracking is required, the problem becomes
more difficult due to the underactuated nature of quadrotors. In this section, we review both
classes of control methods and lead to our contribution.
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Attitude and altitude stabilization of a quadrotor could be achieved by many approaches.
Classical methods were examined in several papers. In [12], a PID controller and a LQ con-
troller were compared. The PID controller neglected gyroscopic effects but were able to
stabilize the system with minor disturbances. The LQ controller gave average performance
because the linearized reference model was imperfect. In [70], Li presented another experi-
ment to confirm the feasibility of PID designs. Nonlinear control methods were also widely
experimented. In [13], a backstepping and a sliding mode controllers were compared. The
backstepping controller gives more robust performance. In [14], an adaptive sliding mode
controller was presented. Simulation results indicated that the controller was robust to model
uncertainty in mass and rotational inertia.

However, the feasible control methods reduce dramatically when horizontal position
tracking is required. The challenge is on resolving the underactuation issue, or using only
four independent actuation inputs to handle all six degrees of freedom. Specifically, the
tilting in roll and pitch are coupled with horizontal motions. To derive feasible horizontal
control laws, the dynamic model is usually greatly simplified [67, 137] to avoid the explosion
of terms when taking time derivatives.

In [137], Xu divided the model into two subsystems. The fully actuated system were
handled by PID controllers. The underactuated system with horizontal motions was stabi-
lized to a fixed point by a sliding mode controller. However, it was unable to track a moving
trajectory because it lacked the time derivatives of the desired roll and pitch. In [67], Lee
tried both feedback linearization and adaptive sliding mode to fully control a quadrotor. In
feedback linearization, the system was reduced to include only thrust forces and gravity, and
yet the derived control laws were quite lengthy. In addition, it augmented the state-space
model with control inputs as additional states, yielding complicated dynamical input con-
trol laws. In the sliding mode controller, the horizontal position were controlled by two PD
controllers, instead. In [127], another similar feedback linearization method with dynamic
inputs was presented. Compared to [67], the model in [127] was more complete, and the term
explosion problem became huge! In summary, it is practically impossible to derive concise
control laws from a full quadrotor model by directly applying nonlinear control methods.

In this Section, we design the low-level controllers capable of tracking both horizontal
positions and Euler angles. As we will see later, horizontal (XY) position tracking of a
quadrotor is quite difficult. Our approach is to augment the quadrotor model with two
first-order filters from the dynamic surface control (DSC) literature [123]. With the DSC
filters, we were able to access lagged version of the required time derivatives and indirectly
formulate concise control laws, to fully control a quadrotor, including horizontal positions.

5.3.2 Dynamic Model

The dynamic model of a quadrotor is similar to a typical airplane with a different set of
forces. Here we use Euler angles instead of quaternion, to express the control laws derived
later. One limitation of using Euler angles is that there is a singularity at θ = 90◦. Define
a fixed north-east-down (NED) inertial world frame W and a non-inertial body frame B



CHAPTER 5. 4D TRAJECTORY FOLLOWING 83

attached to the center of gravity of the quadrotor (Figure 5.4). The following is a list of
variables used to describe the dynamics of a quadrotor.

• X = [X Y Z]T : quadrotor position in W ;

• x = [x y z]T : quadrotor position in B;

• V = [VX VY VZ ]T : quadrotor velocity in W ;

• Θ = [φ θ ψ]T : Euler angles roll, pitch, and yaw in B, respectively;

• ω = [ωx ωy ωz]
T : quadrotor angular velocity in B;

• m: quadrotor mass;

• I = diag(Ix, Iy, Iz): mass moment of inertia in B;

• ωri : motor speeds, i = 1, 2, 3, 4;

• Ω = −ωr1 + ωr2 − ωr3 + ωr4 : sum of motor speeds;

• kf , km: motor thrust and torque coefficients, respectively;

• ct, cr: translational and rotational drag coefficients, respectively;

• l: moment arm from the origin of B to each motor.

• g: gravitational acceleration, [0 0 g]T in NED frame with g = 9.81m/s2.

Figure 5.4: The reference frames of a quadrotor.

Assume that the motor forces are proportional to motor speed squared ω2
ri

, and the
control inputs U satisfy equation (5.1) with constraints. Physically, the control inputs
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U1, U2l, U3l, U4 represent the total thrust and the total motor torques along the roll, pitch,
and yaw axes, respectively. These are the control inputs for altitude and Euler angles. The
constraints in (5.1) represent the physical capacity of the motors.

U =


U1

U2

U3

U4

 =


kf kf kf kf
0 kf 0 −kf
kf 0 −kf 0
km −km km −km



ω2
r1

ω2
r2

ω2
r3

ω2
r4


4kfω

2
r,min < U1 ≤ 4kfω

2
r,max

−kfω2
r,max ≤ U2 ≤ kfω

2
r,max

−kfω2
r,max ≤ U3 ≤ kfω

2
r,max

−2kmω
2
r,max ≤ U4 ≤ 2kmω

2
r,max

(5.1)

Other forces include gravity mg, translation drag ctV , rotational drag crω
2, and Coriolis

forces from quadrotor body rotation and motor rotations. The state-space model could be
written compactly as equation (5.2).

Ẋ = V

Θ̇ = R−1
v ω

V̇ = g +
1

m

−ctV −RB→W
 0

0
U1


ω̇ = I−1

ω × (Iω)− ω ×

Ir
0

0
Ω

− crω2 +

U2l
U3l
U4


(5.2)

In (5.2), RB→W is the rotation matrix from frame B toW , and Rv is a linear transforma-
tion from Θ̇ to ω. Use small case s and c to represent sin and cos functions, respectively,
then the matrices are given by

RB→W =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


Rv =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ


We only gives a brief summary of the model to introduce enough notations for controller

derivations. For details, refer to an equivalent dynamic model in [14]. The expanded version
of (5.2) is given by equation (5.3) for reference.
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

Ẋ

Ẏ

Ż

φ̇

θ̇

ψ̇

V̇X
V̇Y
V̇Z
ω̇x
ω̇y
ω̇z



=



VX
VY
VZ

ωx + ωysφtanθ + ωzcφtanθ
ωycφ− ωzsφ
− ct
m
VX

− ct
m
VY

− ct
m
VZ

Iy−Iz
Ix

ωyωz − cr
Ix
ω2
x − Ir

Ix
Ωωy

Iz−Ix
Iy

ωxωz − cr
Iy
ω2
y − Ir

Iy
Ωωx

Ix−Iy
Ix

ωxωy − cr
Iz
ω2
z



+



0
0
0
0
0
0

cφsθcψ+sφsψ
m

cφsθsψ−sφcψ
m
cφcθ
m

0
0
0



U1 +



0
0
0
0
0
0
0
0
0
l
Ix

0
0



U2 +



0
0
0
0
0
0
0
0
0
0
l
Iy

0



U3 +



0
0
0
0
0
0
0
0
0
0
0
1
Iz



U4

(5.3)

5.3.3 Controller Design

Given the quadrotor model in Section 5.3.2, we can follow the standard procedure of designing
sliding mode controllers, and formulate four independent control laws governing the altitude
and attitudes (Euler angles) [14]. However, to achieve horizontal position control, we need to
derive the desired roll (φd) and pitch (θd) as intermediate bridges. On one hand, they serve
as synthetic control inputs for horizontal motions in X and Y . On the other hand, they
are also the reference signals for the actual roll (φ) and pitch (θ). As is mentioned before,
traditional methods such as backstepping and state augmentation lead to explosion of terms.
To avoid that, we apply dynamic surface control (DSC) techniques in the horizontal position
controllers.

First, we define the tracking errors. We use the subscript d to represent the desired value
of any variable.

eX
4
= X −Xd eθ

4
= θ − θd

eY
4
= Y − Yd eφ

4
= φ− φd

eZ
4
= Z − Zd eψ

4
= ψ − ψd

Note that to achieve position control, we can specify the desired position (Xd, Yd, Zd) and
desired yaw (ψd). However, we cannot arbitrarily specify the desired pitch (θd) and roll (φd)
because they are coupled with the horizontal motions (Xd, Yd).

Define the sliding surfaces to be some first-order filters of the error terms (5.4) with
tuning parameters λ′s [119]. Note that the first terms in Sφ and Sθ are different from the
rest.
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SX
4
= ėX + λXeX Sθ

4
= θ̇ + λθeθ

SY
4
= ėY + λY eY Sφ

4
= φ̇+ λφeφ

SZ
4
= ėZ + λZeZ Sψ

4
= ėψ + λψeψ

(5.4)

The asymptotic stability proof of a general sliding mode controller is based on Lyapunov’s
second method. Define a general sliding surface S in a form similar to (5.4). First, we
compute Ṡ, or the time derivative of S, and set it equal to −ηsgn(S). Let the positive
definite Lyapunov function be V = 1

2
S2, then V̇ = SṠ ≤ −η|S| is negative definite, which

guarantees S → 0 asymptotically. Once we are on S = 0, the tracking error goes to zero
exponentially [59]. Here, we simply use the design method without proofs.

5.3.3.1 Vertical and Yaw Controllers

The sliding mode controllers for altitude and yaw are straight-forward. Take the first time
derivatives of the corresponding sliding surfaces in (5.4), and set them equal to the robustness
terms with parameters ηZ and ηψ, we have

ṠZ = (V̇Z − Ẍd) + λZ ėZ
4
= −ηZsgnSZ

Ṡψ ≈ (ω̇z − ψ̈d) + λψėψ
4
= −ηψsgnSψ

(5.5)

In (5.5), we approximate ψ̈ to be ω̇z. Substitute V̇Z and ω̇z from (5.3) into (5.5), we get
the vertical and yaw control laws in (5.6).

U1 =
m

cφcθ

[(
−g +

ct
m
VZ + Z̈d

)
− λZ ėZ − ηZsgnSZ

]
U4 = Iz

[(
−Ix − Iy

Iz
ωxωy +

cr
Iz
ω2
z + ψ̈d

)
− λψėψ − ηψsgnSψ

] (5.6)

5.3.3.2 Horizontal Controllers

In this section, we derive the horizontal control laws by augmenting our system with DSC
filters. The overall horizontal motion control architecture is shown in Figure 5.5. It is a
3-step process. First, we derive the synthetic controls θ̄ and φ̄ required to track Xd and Yd
via sliding mode. At this point, if we use U3 and U2 to control θ̄ and φ̄ directly, we will have
to take time derivatives of θ̄ and φ̄ and lead to the explosion of terms. Instead, we convert
θ̄ and φ̄ into θd and φd, respectively, using DSC filters. The derivatives of θd and φd are
implicitly given by the filter updates and thus resolved the term explosion problem. Finally,
we can use control inputs U3 and U2 to drive θ and φ to θd and φd, respectively, via sliding
mode. In the following, we show the design process in details.

Derive synthetic inputs θ̄ and φ̄ via sliding mode First, take the time derivative
of the sliding surfaces SX and SY in (5.4) and set them equal to the robustness terms with
parameters ηX and ηY , respectively.
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Figure 5.5: The horizontal motion control architecture.

ṠX = (V̇X − Ẍd) + λX ėX
4
= −ηXsgnSX

ṠY = (V̇Y − Ÿd) + λY ėY
4
= −ηY sgnSY

(5.7)

Substitute V̇X and V̇Y from (5.3) into (5.7) and simplify, we have

R(ψ)

[
cφsθ
sφ

]
=

 m
U1

((
ct
m
VX + Ẍd

)
− λX ėX − ηXsgnSX

)
m
U1

((
ct
m
VY + Ÿd

)
− λY ėY − ηY sgnSY

)  (5.8)

where the matrix R(ψ) is

R(ψ)
4
=

[
cψ sψ
sψ −cψ

]
Note that the roll φ and pitch θ on the left-hand side of equation (5.8) actually represent

the synthetic controls for the desired horizontal motions. We denote these two synthetic
controls as θ̄ and φ̄ to distinguish them from the actual pitch θ and roll φ. We can further
simplify (5.8) with small angle approximations: cφsθ ≈ θ and sφ ≈ φ, yielding sliding mode
control laws (5.9).

[
θ̄
φ̄

]
= R(ψ)

 m
U1

((
ct
m
VX + Ẍd

)
− λX ėX − ηXsgnSX

)
m
U1

((
ct
m
VY + Ÿd

)
− λY ėY − ηY sgnSY

)  (5.9)

Augment system with DSC filters To proceed, we need to somehow use equation
(5.9) in the time derivative of Sθ and Sφ, so that the controls U3 and U2 can appear. However,
as was mentioned in Section 5.3.1, it requires taking time derivatives of (5.9), which leads
to explosion of terms. To avoid that, we instead augment the dynamic system (5.2) with
two first-order DSC filters shown in (5.10), to indirectly converge the desired pitch θd and
roll φd to the synthetic controls θ̄ and φ̄, respectively [123]. The time constants τθ and τφ
determine the convergence rates. The initial conditions are set to zeros in both filters.

τθθ̇d + θd = θ̄, θd(0) = 0

τφφ̇d + φd = φ̄, φd(0) = 0
(5.10)

The DSC filters (5.10) allows us to compute θ̇d and φ̇d required in Ṡθ and Ṡφ, without
taking time derivatives of θ̄ and roll φ̄. Therefore, no simplifications in the dynamics are
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needed to accommodate the explosion of terms. A semi-global stability proof via Lyapunov

analysis is lengthy because it involves the error dynamics (θ̇d− ˙̄θ) and (φ̇d− ˙̄φ), which again
involves explosion of terms. A standard proof is provided in [123]. Here, we simply adopt
the results.

Derive control inputs U3 and U2 via sliding mode Now we can take the time
derivatives of Sθ and Sφ, and set them equal to their robustness terms with parameters ηθ
and ηφ, respectively, with θ̈ ≈ ω̇y and φ̈ ≈ ω̇x.

Ṡθ ≈ ω̇y + λθ(θ̇ − θ̇d)
4
= −ηθsgnSθ

Ṡφ ≈ ω̇x + λφ(φ̇− φ̇d)
4
= −ηφsgnSφ

(5.11)

In equation (5.11), ω̇y and ω̇x include the control inputs U3 and U2. They (ω̇y and ω̇x),
as well as θ̇ and φ̇, are given by (5.3), and θ̇d and φ̇d are given by re-expressing the DSC
filters as (5.12).

θ̇d =
1

τθ

(
θ̄ − θd

)
φ̇d =

1

τφ

(
φ̄− φd

) (5.12)

In equation (5.12), θ̄ and φ̄ are given by (5.9), and θd and φd are given by the DSC filter
updates in (5.10). Then, the horizontal control laws are given by

U3 =
Iy
l

[(
−Iz − Ix

Iy
ωxωz +

cr
Iy
ω2
y +

Ir
Iy

Ωωx

)
− λθėθ − ηθsgnSθ

]
U2 =

Ix
l

[(
−Iy − Iz

Ix
ωyωz +

cr
Ix
ω2
x +

Ir
Ix

Ωωy

)
− λφėφ − ηφsgnSφ

] (5.13)

Note that the terms in (5.6), (5.9) and (5.13) could be categorized into three parts.

Take U1 as an example. The first part
(
−g + ct

m
VZ + Z̈d

)
cancels the original (possibly

nonlinear) dynamics; the second part (−λZ ėZ) is the desired linear dynamics; the third part
(−ηZsgnSZ) is an uncertainty robustness term.

Lastly, the signum function (sgn(·)) should be replaced by a smoothed function to avoid
chattering. In this paper, we use a function with logistic and linear smoothing (5.14).

ηsgn(S)←
[
η1

(
2

1 + e−cS
− 1

)
+ η2S

]
(5.14)

Other than small angle approximations, we did not make any simplification to the full
dynamic model (5.2) throughout the derivations. The innovation lies in the adoption of DSC
filters.
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5.4 High-Level MPC Controller

This section focuses on the high-level trajectory following controller (Section 5.2.2). A review
on the current path following literature is presented in Section 5.4.1. And the controller
design is in Section 5.4.4.

5.4.1 Literature Review

Path following is a basic requirement for any type of vehicle. A survey of the UAV path
following literature is presented in [125]. It categorizes the algorithms into geometric methods
and control techniques. They outputs of the algorithms is a desired acceleration vector,
including magnitude and heading.

Pure pursuit [23] and line-of-sight (LOS) [95] guidance laws, is a simple geometric method.
The algorithm uses a virtual target point (VTP) on the path. The control law drives the
vehicle to chase the VTP, which eventually leads the vehicle onto the path. The stability
of LOS guidance laws depends heavily on the selection of the virtual distance parameter,
the distance between the VTP and the UAS position projected on the path. However, pure
pursuit is not robust and could give large cross-track error under wind disturbance.

Another geometric approach is based on vector fields (VF) [86]. The main idea is that
vector field indicate the direction of flow. VFs operate in two modes. When the vehicle is far
away from the path, it gives a constant entry heading command. When the vehicle enters a
transition zone close to the path, the heading command converges to the path. The stability
of the algorithm is shown by Lyapunov stability arguments in [86]. Vector field is known
to give low cross-track error, but it has more tuning parameters and could be subjected to
chattering.

Geometric methods can track the path well, but they usually has no mechanisms to
track speeds. On the other hand, control techniques are another popular type of path
following algorithms. They are often capable of tracking speeds at different locations, as
well as providing a certain degree of robustness to wind disturbances. A PID controller with
feed-forward capability was presented in [103] to give high lateral tracking performance. A
well-known linear control technique is linear quadratic regulator (LQR). In [101], the author
solves a LQR problem with distance and speed error dynamics to generate an optimal lateral
acceleration command. Model predictive control (MPC) [53] uses a similar formulation but
with a finite time horizon. Other techniques include slidng mode control [42], feedback
linearization [107], backstepping [4], and dynamic programming [118]. In [107], an input-
output feedback linearization controller is designed to address the path following problem
defined by path, velocity, and yaw specifications. Lastly, a 3D path following algorithm is
presented in [22] to manage a fleet of UASs. The error dynamics is defined by position error,
heading error, rotational matrix error, and angular velocity error. The time coordination
problem is addressed by introducing coordination variables.

The goal of this section is not to invent a new controller, but rather show that the
trajectories generated in Chapter 4 can be followed reasonably well by a quadrotor, when
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appropriate speed limits are imposed along the sharp turns. Therefore, we would like to not
only follow the path, but also track the speeds associated with each waypoint. Geometric
approaches cannot achieve the later goal explicitly. Therefore, we choose a simple MPC
controller to perform 4D trajectory following.

5.4.2 Dynamic Model

The MPC controller uses the following 4-state dynamic model in equation (5.15). The model
simply composes of two double integrators reprenting linear motions in X and Y axes. There
are two additional viscous damping terms modeling aerodynamic drag in the acceleration.

d

dt


X(t)
Y (t)
VX(t)
VY (t)

 =


VX(t)
VY (t)

aX(t)− ct
m
VX(t)

aY (t)− ct
m
VY (t)

 (5.15)

In state-space form, it can be re-written equivalently as equation (5.16). Obviously, it
is a linear model. And we assume to have full access to the states, i.e., the state x(t) is
available at the current time t. This assumption is realistic because position and velocity
information is generally estimated well in UAS autopilots.

ẋ(t) = Acx(t) +Bcu(t)

x(0) = x0

(5.16)

where

Ac =


0 0 1 0
0 0 0 1
0 0 −ct/m 0
0 0 0 −ct/m

 , Bc =


0 0
0 0
1 0
0 1


x = [X Y VX VY ]T , u = [aX aY ]T

To use MPC, we often discretize the continuous model using a first-order Euler expansion
with a sampling time ∆t. The final form of the state-space model is shown in equation (5.17).
The four states are linear positions X(k), Y (k), and linear velocity VX(k), VY (k). The control
variables are the horizontal acceleration aX(k), aY (k), which can easily be converted to a
magnitude and a heading angle.

x(k + 1) = Ax(k) +Bu(k) (5.17)

where

A = I4 + Ac∆t

B = Bcdt

x(k) = [X(k) Y (k) VX(k) VY (k)]T

u(k) = [aX(k) aY (k)]T

(5.18)



CHAPTER 5. 4D TRAJECTORY FOLLOWING 91

5.4.3 Horizontal Control Conversion

To convert the horizontal kinematic control u to horizontal control inputs U2 and U3, we
assume that the quadrotor is in vertical equilibrium. Then the inputs that could affect the
horizontal motions are the desired roll (φd), pitch (θd), and yaw (ψd). It turns out that yaw is
not effective, so we choose roll and pitch. The conversion is straight forward. First, convert
the acceleration command [aX aY ]T from the inertial frame to the quadrotor body frame B,
and then convert it to the desired pitch (θd) and roll (φd). Equation (5.19) summarizes the
process.

ax = aX cosψ + aY sinψ

ay = −aX sinψ + aY cosψ

θd = −tan−1(ax/g)

φd = tan−1(ay/g)

(5.19)

5.4.4 Controller Design

With the model in equation (5.17), we can write down the MPC formulation. Define the
tracking error x̃(k) in equation (5.20).

x̃(k) = xd(k)− x(k) (5.20)

The current state x(k) is clearly defined in equation (5.18). But the desired state xd(k) is
defined differently in different papers. In this dissertation, we adopt the following definition
of xd(k) in Figure 5.6. Each waypoint has a 3D position, a speed, and a direction implicitly
defined along the path. First, we fit the set of waypoints within the current time horizon to
a cubic spline with continuous slope and curvature. Then, the closest point [Xd(k) Yd(k)],
indicated by the red dot, on the path is found by drawing a perpendicular line from the
current position [X(k) Y (k)]. The velocity is [VX,d(k) VY,d(k)], indicated by the red arrow,
is found by the speed command and the derivative expression of the spline.

To avoid large tracking error due to excessive speed, the speed command Vd = ||[VX,d; VY,d]||
is thresholded by a maximum speed as a function of the instantaneous radius R(x(k)).

Vd(R(x(k))) ≤
√
amaxR(x(k)) (5.21)

The optimal control problem can then be written as equation (5.22) for a finite time
horizon with N steps. The cost function consists of quadratic stage costs for states and
control from time steps 0 to N − 1 and a terminal state cost at time step N . There are
several constraints. The dynamic constraint includes both the dynamic equation and initial
condition. To limit the jerk, we impose a maximum variation of jmax∆t between two con-
secutive controls. And the state x ∈ X where X is a feasible set, and the control u ∈ U also
has to be feasible.



CHAPTER 5. 4D TRAJECTORY FOLLOWING 92

Figure 5.6: Definition of the desired state xd(k).

min
u(0),...,u(N−1)

{
N−1∑
k=0

[
x̃(k)TQx̃(k) + u(k)TRu(k)

]
+ x̃(N)TSx̃(N)

}
s.t : x(k + 1) = Ax(k) +Bu(k), k = 0, ..., N − 1

x(0) = x0

||u(k + 1)− u(k)|| ≤ jmax∆t, k = 0, ..., N − 1

x(k + 1) ∈ X , k = 0, ..., N − 1

u(k) ∈ U , k = 0, ..., N − 1

(5.22)

The feasible set of states X are bounded by a maximum speed Vmax. The feasible set of
controls U are bounded by a maximum acceleration umax. Note that these constraints form
second-order cones, so the optimization problem retains convexity.

X = {x ∈ R4 |x(3)2 + x(4)2 ≤ V 2
max}

U = {u ∈ R2 | ||u|| ≤ umax}
(5.23)

The first control action u∗(0) is applied after the optimal control problem is solved. The
other controls are discarded. The process is repeated in the next time step. This type of
control strategy is called receding horizon control (RHC). To make sure that the RHC is
persistently feasible for all choices of cost functions, we also compute the control invariant
terminal set Xf at time horizon N in every time step.

5.5 Simulations

In this section, we first examine the performance of the low-level controllers, then evaluate
the combined controller to see how close it can track different flight trajectories.
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5.5.1 Low-Level Controllers

In this section, we present the simulation results of the sliding mode controllers. First, we
examine the behavior of the sliding mode controllers with DSC filters defined in equation
(5.10). Second, the robustness of the sliding mode controllers is evaluated with respect to
disturbance, model uncertainty, and measurement noise. All simulations are performed in
MATLAB/SIMULINK R2015a [76] with a fixed-time-step solver dt = 0.02sec.

The quadrotor parameters are referenced from [73] with a different rotational inertia
matrix, so that the model is more realistic.

m = 2.0 kg

km = 10−6 Nm · s2

ct = 10−2 Ns/m

l = 0.2m

g = [0 0 9.81]T m/s2

kf = 10−5 N · s2

cr = 10−2 Nm · s2

I = 1.2416 diag([1 1 2]e-2) kg m2

(5.24)

The reference trajectories in altitude, yaw, and horizontal positions are either sinusoids
or zeros. The sinusoidal references are taken from [50] in equation (5.25). The exponential
terms are introduced to produce smooth initial references.

Xd(t) = (1− e−t3)sint m
Yd(t) = (1− e−t3)cost m
Zd(t) = −(1− e−t3) m
ψd(t) = 30(1− e−t3)sint ◦

(5.25)

The controller gains are listed below in (5.26). There are two sets of η′s as defined in
(5.14) for each of the six control laws (5.6), (5.9), and (5.13). The two time constants τφ and
τθ are chosen to minimize filter lags while preserving system stability.

η1X = 3 η1Y = 3 η1Z = 4
η1φ = 20 η1θ = 20 η1ψ = 10
η2X = 1 η2Y = 1 η2Z = 5
η2φ = 50 η2θ = 50 η2ψ = 10
λX = 2 λY = 2 λZ = 3
λφ = 50 λθ = 50 λψ = 10
cX = 5 cY = 5 cZ = 50
cφ = 80 cθ = 80 cψ = 10
τφ = 0.1 τθ = 0.1

(5.26)

5.5.1.1 Ideal Behavior

Figure 5.7 shows the tracking performance of both the DSC filters and sliding mode con-
trollers without any model uncertainties or disturbances. In Figure 5.7a, the gray dashed
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(a) DSC filters make φd and θd (dashed red lines) follow φ̄ and θ̄ (dashed gray lines) with small
lags, respectively. Then, sliding mode controllers in (5.13) drive θ and φ (solid black lines) to θd
and φd, respectively.

(b) tracking reference signals with zero (solid black lines) and nonzero (solid blue lines) initial
conditions (IC).

Figure 5.7: Tracking performance without disturbance.
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Figure 5.8: Constant wind disturbance

lines indicate the synthetic controls φ̄ and θ̄ required to drive the quadrotor to a desired
horizontal position (Xd, Yd) (equation (5.9)). To use sliding mode control, we need the
derivatives of φ̄ and θ̄. However, if their derivatives were computed analytically from equa-
tion (5.9), we would have explosion of terms. Instead, by introducing the DSC filters, the
reference synthetic controls φd and θd in dashed red lines (equation (5.10)) are able to track
φ̄ and θ̄ closely with only small lags. As a result, we can compute their derivatives from
equation (5.12) analytically. With φd, θd, and their derivatives, the sliding mode controllers
in (5.13) can drive the quadrotor roll (φ) and pitch (θ) to θd and φd, respectively. Therefore,
horizontal position tracking is achieved.

Figure 5.7b shows the tracking results of a perfectly known quadrotor model, with respect
to zero or nonzero initial conditions (IC). In the case with zero IC (black), we have almost
perfect tracking for all references. In the case with nonzero horizontal IC, the convergence
in X and Y is also fast, both within 3sec.

5.5.1.2 Robustness

Disturbance: The disturbance model is an external wind field Vwind = [10 10 10]m/s
similar to [75], applied right after time t = 5sec. To examine the disturbance effect, we used
zero references for X, Y , and Z, instead. Figure 5.8 shows that the horizontal and vertical
tracking are affected by about 10−3m and 10−4m, respectively. The tracking errors could not
be eliminated because we smoothed the signum functions to avoid chattering. The results
are acceptable because the errors are so tiny and would not be noticeable.

Model uncertainty: We examined the robustness of model uncertainty by varying mass
m and rotational inertia RI [14]. We first considered an uncertainty of 20% on mass and 10%



CHAPTER 5. 4D TRAJECTORY FOLLOWING 96

Figure 5.9: Mass and rotational inertia (RI) uncertainty

on RI, and second an uncertainty of 35% on mass and 15% on RI. The tracking references
are given by (5.25). Figure 5.9 shows the simulation results. The difference in performance
could not be observed in the overall tracking plots. When zoomed in (gray boxes), we can
see that the altitude tracking is affected by 0.005m to 0.010m due to mass uncertainty, and
the horizontal tracking is affected by about 0.01m due to both mass and RI uncertainty.
Again, the additional tracking errors due to mass and RI are quite small. The controllers
are robust to mass and RI uncertainty.

Measurement noise: Lastly, we examined to robustness to measurement noise by
inserting white Gaussian noise (5.27) (in SI units) [15] into the 12 states given by (5.2). The
MATLAB command randn(12, 1) generates a noise vector of 12 elements with mean 0 and
standard deviation (SD) 1. Then, the noise vector is vector multiplied by the desired SD’s.
The references are again given by (5.25).

Noise = randn(12, 1)([10; 10; 10; 1; 1; 1;

10; 10; 10; 1; 1; 1]10−2)
(5.27)
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Figure 5.10: Measurement noise

The simulation results are shown in Figure 5.10. The tracking of the first 2 to 3sec
are affected slightly by noise. The zoomed in view in Z shows the noisy trajectory with
an average error of about 0.001m (blue line). Yaw tracking becomes a little noisy but is
essentially unchanged. Interestingly, observe that the X and Y tracking trajectories are still
smooth under noisy measurements. It is due to the smoothing effect of the DSC filters,
which could be observed in Figure 5.11. The controllers are robust to measurement noise.

In summary, by introducing DSC filters, we overcome the term explosion problem in
sliding mode control of an underactuated quadrotor. This technique is also applicable to
other nonlinear control methods, i.e. feedback linearization. The filters introduce small lags
but facilitate us to obtain time derivatives of complex intermediate signals. The controllers
were first simulated under unmatched initial conditions in a perfect model. Simulation
indicated fast convergence to all reference signals. The robustness of the controllers were
tested under wind disturbance, mass uncertainty, and measurement noise. The controllers
performs very well in all tests. In the future, we would like to make the controllers adaptive
to model uncertainty and varying wind disturbance.
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Figure 5.11: Synthetic controls with DSC filters under noisy measurements.

5.5.2 Overall Controller

A trajectory following example is simulated using the controller defined in Figure 5.2. The
low-level sliding controller parameters are in equation (5.26), and the high-level MPC con-
troller parameters are in equation (5.28). The reference trajectory is taken from Section
4.6.1 with a constant speed command vdes = 20m/s and no wind. The maximum available
horizontal acceleration is amax, and the maximum centripetal acceleration is amax,turn.

amax = 10m/s2 N = 20
amax,turn = 3m/s2 ∆t = 0.05s
jmax = 10m/s3

(5.28)

The tracking result is shown in Figure 5.13. We compared the tracking errors at certain
locations along the path in Table 5.1 with another geometric path following approach called
vector field (VF). The VF approach is reviewed in Section 5.4.1. Note that the VF approach is
not capable of tracking speed commands. However, among the other geometric methods, it is
known to give lower cross-track errors but tend to give oscillatory paths. Figure 5.13a shows
a top view and elevation view to show the horizontal cross track errors and vertical tracking
errors. Figure 5.13b is a perspective view with all paths inside the elevated terrain surface
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(Section 4.6.1). Together they provide a qualitative comparison of the two approaches. In
the following, we only focus on the horizontal cross-track errors.

Table 5.1: Cross-track error comparison between MPC and VF.

Point Coord. [m] MPC [m] VF [m]

(−69.0,−61.2) 1.4 2.0

(194.0, 238.4) 2.4 11.8

(341.0, 279.4) 0.6 9.3

(382.0, 318.7) 1.4 9.9

The MPC tracking errors is quite consistent, ranging from 0.58m to 2.4m, regardless of
the path curvature. In contrast, the errors in VF is much worse at high curvature locations,
ranging from 2.0m to 11.8m in this example. The tracking errors in MPC is significant lower
than VF at locations with large curvature. There are two reasons for the better tracking
result. First, MPC can track the smaller speed command at large curvature locations, and
thus requires less centripetal acceleration to make turns. The MPC speed tracking time
history is shown in Figure 5.12. In general, the speed command is a constant at 20m/s,
but it is reduced at large curvature locations highlighted in green. Second, MPC naturally
provides a feed-forward control whereas VF does not. Consequently, the feedback control
element of MPC requires less robustness to uncertainty and therefore tracks the desired
trajectory with less error. In conclusion, under perfect modeling without wind disturbance,
MPC is capable of tracking most of the 4D trajectories generated from Chapter 4.

Figure 5.12: MPC speed tracking time history. Vd is desired speed, and V is the actual speed
achieved by the UAS. The green region indicate locations with high curvatures.

We also tried the simulation with wind disturbance. The wind is modeled as a constant
force blowing in a direction perpendicular to the path. Case Wind 1 and Wind 2 represent a
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(a) 2D view.

(b) 3D view overlaid with elevated DEM surface.

Figure 5.13: Tracking performance without wind disturbance.
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mild wind and a strong wind condition, respectively. The lateral forces exerted in case Wind
1 and Wind 2 are equivalent to 0.3mg and 0.7mg, respectively. The upward vertical forces
reduces the available lateral acceleration due to the vertical force equilibrium constraint.

Figure 5.14 shows the qualitative tracking comparison for the same scenario. The black
solid line indicate the reference path. The other solid lines with different colors are MPC
trajectories, while the dashed lines are VF paths. At location (1), the errors in MPC is
again significantly lower that VF’s. Table 5.2 shows the largest cross-track errors at the two
high curvature locations. Both methods give significant errors in Location (1) compared to
Location (2). In this case, MPC gives significantly lower errors under mild wind condition,
6.3m compared to 22.5m in the VF path. Such errors are comparable to GPS errors (∼ 5m).

However, in the extreme case Wind 2, both methods give errors larger than 10m. It makes
sense because the UAS has to spend a lot of energy to even maintain hovering. Therefore,
large errors are expected regardless of the control methods. In reality, such windy conditions
should be avoided if possible. Indeed, the trajectories generated from Chapter 4 tend to
avoid such high wind areas to minimize the energy consumption. In this perspective, the
flight planning system also help stabilize the UAS by avoiding high wind.

Figure 5.14: Tracking performance with wind disturbance.
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Table 5.2: Cross-track error comparison between MPC and VF.

Location Wind Force [N ] (1) (2)

Cases MPC [m] VF [m] MPC [m] VF [m]

No wind (0, 0, 0) 2.4 11.8 1.4 9.9

Wind 1 (−2, 2, 0, 2) 6.3 22.5 1.6 6.0

Wind 2 (−5, 5, 0, 5) 13.5 25.6 6.2 11.1
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Chapter 6

Collision Avoidance with Manned
Aircraft

6.1 Introduction

This chapter is an exploration of the drone collision avoidance problem in urban areas. The
main contribution is a safety control framework that enables a UAS to perform collision
avoidance with manned aircraft during autonomous navigation. To formulate a meaningful
collision avoidance problem, we first identify the manned and unmanned aircraft of interest.
Airspace management proposals from the FAA [92] and corporations such as Google [39]
and Amazon [28, 102] envisage drones flying below 500ft, or 150m in class G airspace, i.e.,
below all the aircraft carrying people. At this altitude, emergency flights involving news,
police, and EMS helicopters occupy a majority of the possible flights [39]. On the other
hand, UAS flying in urban areas need vertical take-off, landing, hovering ability, and omni-
directional maneuverability. This makes most urban UAS multirotors, and quadrotors are
the simplest type of multirotors. Hence we focus on collision avoidance between quadrotors
and helicopters.

For safety critical type of application, it is important to capture the worst-case scenario.
Although airspace design can efficiently separate helicopters from drones, the separation is
not 100% guaranteed in urgent scenarios such as helicopter emergency flights, which accounts
for a majority of low-altitude helicopter missions. In addition, it is not safe to assume
exclusive avoidance responsibility to human pilots because pilot errors account for 85% of
crashes in general aviation [69]. To ensure safety, the quadrotor must take avoidance actions
in the last minute, before a collision becomes unavoidable.

In general, sense-and-avoid (SAA) technology could be divided into two categories, namely
collaborative and non-collaborative [28]. Non-collaborative SAA relies on remote sensing
technologies to detect obstacles. Aircraft with these sensors could detect a wide range of
obstacles. However, for small UAS (sUAS) less than 50lb [92], we have limited payload ca-
pacity and detection range. Some state-of-the-art sensors with direct distance measurements
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are small radars [7], lidars [46], and 3D cameras [98], with ranges of 400m, 60m, and 30m,
respectively. Significant UAS SAA research has been conducted on them [65, 108, 48, 128,
18]. Monocular cameras may or may not give distance information, depending on the detec-
tion algorithms. For static obstacles, distance information is possible via monocular SLAM
[35, 62]. However, for moving objects, only optical-flow algorithm is available [126, 106, 87],
with no distance information. Other research efforts focus on fusion of both types of sensors
[49, 24, 112].

On the other hand, collaborative SAA relies on vehicle-to-vehicle (V2V) long-range com-
munication, broadcasting and subscribing GPS-based traffic data of aircraft nearby. Google
provides a discussion on collaborative SAA systems in [39]. The transceiver candidates are
Dedicated Short-Range Communications (DSRC) and Automatic Dependent Surveillance-
Broadcast (ADS-B). The communication range goes from 900m (DSRC) [82] to 24km (ADS-
B) [111]. However, collaborative SAA also has several short-comings. The first one is com-
munication delay. ADS-B Out has a bounded transmission latency of up to 2s [5]. Other
WiFi-based technologies such as WiMax and 4G LTE suffer from insufficient geo-spatial
coverage and indefinite/unpredictable communication delays and are not suitable for safety
critical communications [27]. Second, the position information is obtained from GPS, typi-
cally accurate to 5m near ground [136]. In addition, obstacles outside the network are not
detected.

The collision avoidance problem of interest involves high-speed vehicles. Typical quadro-
tors and helicopters can travel at 30m/s and 70m/s, respectively. The 400m detection range
from non-collaborative SAA implies a 4s reaction time under perfect weather condition,
which may not be realistic in worst-case collision with uncertainties. The large range re-
quirement also indicates its insensitivity to GPS position errors (5m, or 1.3%). Therefore,
collaborative SAA is a more feasible choice. Indeed, one can observe that the emergence
of the small UAS industry today stimulates the rapid growth of small-size ADS-B technol-
ogy. Examples are XPS-TR from Sagetech [111] (100g and 12W max power) and PING2020
from uAvioni [97]. In this chapter, we conservatively assume that the vehicles of interest
are equipped with collaborative SAA. Therefore, the collision avoidance algorithm must be
capable of handling communication delays.

Given the collision detection mechanism, what remains is the collision avoidance algo-
rithm, which constitutes the contribution of this chapter. The safety controller generates
optimal control actions when collisions are possible. The algorithm should be able to in-
corporate bounded uncertainties such as communication delay, wind disturbance, sensor
uncertainty, and vehicle dynamics. However, the uncertainties are vehicle and scenario spe-
cific, and their numerical values are not the focus of this chapter. Our simulation only show
a typical scenario, indicating our algorithm can handle these types of uncertainties. We want
to address the following scenario: A manned helicopter ambulance equipped with (ADS-B)-
Out is flying at a low altitude to pick up a patient, when a quadrotor UAS with (ADS-B)-In
is delivering packages autonomously. The quadrotor can receive real-time traffic information
of the helicopter. If collision is possible, the quadrotor would avoid the manned helicopter.
The avoidance maneuver is performed exclusively by the quadrotor UAS.
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In the given drone-helicopter scenario, the current right of way procedure would require
to stop all drone activities until the helicopter completes its mission. However, this procedure
is highly inefficient and costly because quadrotors consume a lot of energy when hovering.
In addition, the pilot error issue is not addressed. In a safety critical system, the proposed
safety controller provide the last safety guarantee when everything in the current procedure
failed.

6.2 Literature Review

Aircraft collision avoidance algorithms has a rich history in the literature, and is generally
referred to as the free-flight problem. There are geometry and probability based approaches
[37, 94, 66, 60], as well as optimal control based methods [79, 44, 114, 78]. Our goal is to
reduce the side effect of avoidance as much as possible, which implies optimality.

The first attempt on addressing the collision avoidance problem in an optimal manner is
presented in [114, 78]. The avoidance problem is formulated as a path planning problem, in
which the optimal path could be found by solving a mixed integer programming problem. The
forbidden zone is set by rectangular constraints for simplicity. However, this is a centralized
approach, which requires avoidance actions from both vehicles. In addition, solving MIQP
becomes computationally expensive when the number of binary variables increases.

In [44], the collision avoidance problem between multiple quadrotors is solved by a decen-
tralized optimal control approach. The optimal control is defined as the maximum accelera-
tion with a constant optimal heading. Consequently, a real-time avoid set can be computed.
The avoidance is activated only when collision becomes inevitable. However, the safety con-
troller is derived from a simplified two-dimensional model. Once the controller is applied to a
full 3D dynamic model, the optimality is not longer guaranteed due to delays from rotational
inertia and aerodynamic drag. Although the model difference is almost negligible in the low-
acceleration (∼ 1.5m/s2) low-speed (∼ 2m/s) drone-drone avoidance scenario [44], it is no
longer valid in the high-acceleration (∼ 10m/s2) high-speed (∼ 100m/s) drone-helicopter
scenario.

For UASs, the introduction of ADS-B facilitates the detection and avoidance of nearby
manned and unmanned aircraft. ACAS X applies equally well to collision avoidance between
UASs. The autonomous nature of UASs with ADS-B make collision avoidance between them
much easier because it reduces uncertainty due to pilot errors. With predictable trajectories,
collisions can be resolved much earlier in time before potential collisions can occur. But
avoiding manned aircraft could be a little tricker when we assume human pilots has top
priority in the airspace. In this chapter, we would like to investigate an alternative approach
to address the collision avoidance problem between a small UAS with ADS-B In and a
manned helicopter with ADS-B Out.
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6.3 Safety Controller

6.3.1 Horizontal Safety Controller from Kinematic Model

To keep the system implementable in real time, the safety controller is derived from a sim-
plified horizontal kinematic model [44]. The safety controller includes two components. The
first component is a horizontal avoidance maneuver, uh = [ah θh]

T , which represents the
quadrotor’s acceleration uh with magnitude ah ∈ [0, amax] and direction θh ∈ [0, 2π], where
θh is measured from the positive x-direction in the relative frame centered at the helicopter
(Figure 6.1). The second component is a switching surface, or the avoid set boundary ∂Kh,
in which the optimal avoidance maneuver u∗

h must be initiated to avoid intrusion into a
safety set Sh. We will elaborate the two components below in details.

Figure 6.1 highlights some position trajectories in solid red lines under optimal control u∗
h.

The helicopter is at the origin, and the quadrotor has a relative position x(t) = (x(t), y(t))
and is heading toward the helicopter with relative velocity ẋ(t). The quadrotor should not
enter the safety set Sh in the present time t = 0, defined by the solid gray circle with radius
rmin around the helicopter. The set of all x(0) lies on the boundary of ∂Sh.

To avoid entering Sh, the quadrotor starts the avoidance maneuver at some initial time
t = t0 in the past when touching the avoid set Kh. The set of all possible x(t0) defines
the boundary of the avoid set, ∂Kh, indicated by the dashed red curve in Figure 6.1. The
complement ofKh is the maximal controlled invariant set [72], in which there is no restrictions
on control. If optimal control u∗

h is applied during [t0, 0], then the quadrotor would fly
tangent to the boundary of the safety set ∂Sh at the present time t = 0, and does not enter
Sh.

For convenience, the relative frame is rotated such that ẋ(t0) = 0 and ẏ(t0) < 0 on ∂Kh.
In other words, points on ∂Kh only have velocity components in the -y axis. For legibility,
we abuse the notation here by hiding this rotation. A backward rotation should be made
after the optimal control angle θ∗h is computed [44].

Define state variables xh(t) = [x(t); ẋ(t)], the relative kinematics is:

ẋh(t) = f(xh(t),uh(t))

d

dt


x(t)
y(t)
ẋ(t)
ẏ(t)

 =


ẋ(t)
ẏ(t)

ah(t)cosθh(t)
ah(t)sinθh(t)

 (6.1)

Consider the dynamical system (6.1) over the time interval [t0, 0] and define a continuously
differentiable function l : R4 → R in (6.2). If l(xh(0)) ≥ 0, then we are outside of Sh [72].

l(xh(0)) = x2(0) + y2(0)− r2
min (6.2)

The objective is to maximize the value function J(xh(t),uh(t), t) = l(xh(0)) subjected
to dynamical and input constraints, defined in (6.3). Note that the value function only has
a terminal value at time t = 0.
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Figure 6.1: The safety set Sh is in gray and the avoid set Kh is in red.

max
uh

J(xh(t),uh(t), t) = l(xh(0))

subject to f(xh,uh)− ẋh = 0

0 ≤ ah ≤ amax

0 ≤ θh ≤ 2π

(6.3)

Use Pontryagin’s Maximum Principle [44], we obtain the optimal acceleration for t ∈
[t0, 0].

a∗h(t) = amax; θ∗h(t) = atan2

(
y(0)

x(0)

)
(6.4)

Secondly, to answer the question on when to apply the optimal control, we need to
compute the avoid set ∂Kh = {(x(t0), y(t0))} by kinematics [8]. Define the relative velocity
v = |ẏ(t0)|. Given a particular θ∗h and rmin on ∂Sh, we have

x(t0) =

(
rmin −

vsin2θ∗h
2amax

)
cosθ∗h

y(t0) =

(
rmin +

v

2amax

(
1 + cos2θ∗h

))
sinθ∗h

(6.5)

The derivation of (6.5) is provided in Appendix .
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From Figure 6.1, we can see that θ∗h is only defined on certain parts of ∂Sh: θ∗h ∈

[0, θc]∪ [π−θc, π] for some θc
4
= θ∗h

∣∣∣∣
x(t0)=0

shown in (6.6). At θ∗h = θc (or x(t0) = 0) and speed

v, we have the worst-case scenario, giving us the worst-case minimum maneuver distance

(WCMMD) to be y(t0)

∣∣∣∣
θ∗h=θc

in (6.5).

θc = sin−1

√
2amaxrmin

v
, 2amaxrmin < v2 (6.6)

Each point on ∂Kh maps uniquely to a θ∗h on ∂Sh. Therefore, we first generate ∂Kh using
(6.5) for a dense set of θ∗h ∈ [0, θc]∪ [π−θc, π], then compare the quadrotor’s relative position
x(t) to points on ∂Kh. If x(t) is very close to a particular point on ∂Kh, then we can find
the corresponding θ∗h and apply the optimal acceleration u∗

h = [a∗h θ
∗
h]
T .

6.3.2 Vertical Safety Controller from Kinematic Model

In this section, we design the vertical safety controller. Define xv = [z(t); ż(t)], where z
represents the relative height referenced from the helicopter. The new kinematics system is
a combination of (6.1) and (6.7), with ah = 0 in (6.1) and (6.7) being the vertical kinematics.
The constraint on av(t) is from [47].

ẋv(t) = f(xv(t), av(t))

d

dt

[
z(t)
ż(t)

]
=

[
ż(t)
av(t)

]
, −av,max ≤ av(t) ≤ av,max

(6.7)

We define a new cylindrical safety set ∂Sv by extruding the original safety set ∂Sh in
Figure 6.1 upward and downward by a minimum height hmin (Figure 6.2). The goal is to
ensure the quadrotor is outside of the cylinder.

To make a fair worst-case comparison with the horizontal safety controller, we assume
that xv(t0) = 0, or the two vehicles are at the same altitude with zero vertical speed before
avoidance. Formulate the optimal control problem according to [44], the optimal control is
given by (6.8).

a∗v = av,max sgn(z(t0)), av,max ∈ (0, g) (6.8)

Ideally, (6.8) says that when the quadrotor is below the helicopter at t0, apply minimum
thrust to obtain a large downward acceleration. Otherwise, when the quadrotor is above
the helicopter, apply the maximum thrust. In reality, the available downward acceleration is
less than g due to drag and the minimum thrust constraint in (5.1) to maintain the desired
quadrotor pose.

The vertical avoid set is derived again from backward dynamics. For a dense set of
θh ∈ [0, π] and |z(t0)| ∈ [−hmin, hmin], we calculate the new avoid set ∂Kv = {(x(t0), y(t0))}
satisfying (6.9).
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Figure 6.2: Visualization of downward vertical avoidance. The safety set Sv is in gray, and
the avoid set Kv is in red.

x(t0) = rmincosθh

y(t0) = rminsinθh + v

√
2 (hmin − |z(t0)|)

|a∗v|
(6.9)

The shape of the avoid set ∂Kv is a half circle offset by a certain distance away from the
helicopter indicated by the dashed red lines in Figure 6.2. Once the quadrotor hits ∂Kv, the
safety controller is activated. The WCMMD is obtained by substituting the relative altitude
z(t0) = 0, relative heading θh(t0) = π/2, and maximum relative speed v into equation
(6.9). or the quadrotor is at the same altitude as the helicopter and heading toward it right
before the avoidance. The MMD drops to rmin as |z(t0)| approaches hmin either upward or
downward.

In the vertical avoidance, we are concerned with not only MMD, but also the maximum
vertical deviation (MVD), or the difference in altitude before and after the vertical avoidance.
The worst-case MVD (WCMCD) in Figure 6.2 occurs together with the WCMMD. Right
after a downward avoidance, the vertical speed of the quadrotor reaches a local maximum,
and it will continue to go down for a while until it starts rising back to the original altitude.
The downward MVD values are determined by hmin when accelerating and the maximum
thrust when decelerating.

6.3.3 Refine the Avoid Sets

The kinematic safety controllers is a good starting point. However, maximum accelerations
a∗h and a∗v could not be achieved instantaneously and constantly in reality. For a quadrotor,
rotational inertia and aerodynamic drag delays reduce the maximum acceleration. Therefore,
the safety controller have to be activated a little earlier before touching the avoid set ∂Kh, we
define this time to be the earlier reaction time (ERT). In the worst-case, when the quadrotor
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and the helicopter are flying directly towards each other at maximum speed, we have the
worst-case earlier reaction time (WCERT). In this section, we show two implementation
refinements. First, we need to convert the acceleration command from the safety controller
to Euler angle commands. This process is described in Section 6.3.3.1 for the horizontal
safety controller and Section 6.3.3.2 for the vertical safety controller. Then, we present
an iterative algorithm to obtain the WCERT with a quadrotor dynamic model in Section
6.3.3.3. The WCERT values are then used to refine the avoid set to ensure safety.

6.3.3.1 Horizontal Control Conversion

To convert the horizontal kinematic control u∗
h to horizontal control inputs U2 and U3 in

Section 5.3.2, we assume that the quadrotor is in vertical equilibrium when performing the
avoidance. Then the inputs that could affect the horizontal motions are the desired roll (φd),
pitch (θd), and yaw (ψd). It turns out that yaw is not effective, so we choose roll and pitch.
The conversion is straight forward. First, convert the optimal acceleration [a∗, θ∗] from the
relative frame to the quadrotor body frame B, and then convert it to the desired pitch (θd)
and roll (φd). Equation (6.10) summarizes the process.

a∗x = a∗h cos(θ∗ − ψ)

θd = −atan2(a∗x, g)

a∗y = a∗h sin(θ∗ − ψ)

φd = atan2(a∗y, g)
(6.10)

Lastly, the low level controllers in Chapter 5 is simulated to track θd and φd defined in
(5.19) using the control inputs U2 and U3 defined in (5.1).

6.3.3.2 Vertical Control Conversion

To apply the vertical kinematic control to the 3D model, we use the following conversion
by ignoring drag. In this case, we can control U1 directly with constraints in (5.1), and no
low-level controllers are needed.

θd = φd = 0; U∗1 ≈ g − a∗v

6.3.3.3 Iterative Algorithm

With control conversion (5.19), we can apply kinematic control law (6.4) at ∂Kh, defined
by (6.5) and (6.6), to the dynamical system (5.2) with control inputs (5.1). However, the
quadrotor will intrude the safety set Sh due to control delay introduced from rotational
inertia and aerodynamic drag in the full dynamic model. To resolve the intrusion, we need
to compute the worst-case earlier reaction time (WCERT), or the time the quadrotor has to
react earlier before touching the safety set Sh, defined in Section 6.3.1, to prevent collision
in the worst-case scenario.

Algorithm 1 computes WCERT for the horizontal safety controller. The function x(t) =
worst case(wcert) simulates the worst-case avoidance scenario when the kinematic controller
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Data: dt, wcert
Result: wcert

dt; % time increment

wcert = 0; % current WCERT

x(t) = worst case(wcert);
while mint|x(t)| < rmin do

wcert = wcert+ dt;
x(t) = worst case(wcert);

end
Algorithm 1: Iterative algorithm to compute WCERT.

reacts wcert earlier, and return the relative horizontal position x(t) for the whole simulation
period.

We start the simulation from the safety sets (6.5). If the minimum relative distance
mint|x(t)| is less than rmin, then we increment wcert and simulate again. In this case,
we set dt to be 0.02s in the case without drag and 0.05s with drag, which gives a spacial
resolution of 2m and 5m, respectively, when maximum speed is v = 100m/s.

Algorithm 1 is applied to a range of amax and v defined in Section 6.3.1. The result is a
look-up table WCERT(amax,v). With this look-up table, WCMMD can be re-computed. The
generation of WCERT values is time-consuming but performed off line. In real flights, we can
just run the light-weight kinematic safety controller in real-time but react WCERT(amax,v)
earlier. If the dynamic model in the simulation is close to the real dynamics, then we are safe.
To obtain usable results, system identification should be performed to establish conservative
quadrotor parameters, which is out of the scope of this chapter and not discussed. Interested
readers can refer to [14].

6.3.4 The Hybrid Controller

The position controller with DSC filters mentioned in Section 6.3.3.1 and the safety con-
troller together constitute a hybrid controller. The safety controller decides when the safety
maneuver starts and terminates. Figure 6.3 shows the hybrid automaton of the controller
switching mechanism. At the beginning, the quadrotor receives a waypoint command, and
the position controller starts to drive the quadrotor to the destination. When a helicopter
is detected, an avoidance set calculation is performed using equation (6.5). The switching
occurs when the quadrotor intrudes ∂Kh, or||x(t)||2 ≤ ||x(t0)||2. Once the safety controller
is activated, the quadrotor avoids the helicopter by applying amax in the optimal direction θ∗h.
After ||x(t)||2 > ||x(t0)||2, the optimal controller is deactivated, and the quadrotor switches
back to position control. If another helicopter is passing by, the optimal control is enabled
again.
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Figure 6.3: The hybrid automaton indicating the controller switching mechanism.

6.4 Simulation

The simulations are divided into two parts. The first part examines the behavior of the two
safety controllers, and the second part presents how the hybrid automaton behaves in the
scenario defined at the end of Section 6.1.

Before presenting the results, we should first justify the parameters chosen for the sim-
ulations. The parameter values, listed in (6.11), are chosen carefully and conservatively to
model a realistic quadrotor model (3DR Solo [2]). However, these parameters vary a lot from
different quadrotors, communication systems, and wind conditions. Therefore, the results
are not intended to cover all possible cases. What we can guarantee is that our safety control
algorithm could give conservative results given conservative parameters for a given quadrotor
with a known communication delay and bounded wind disturbance.

m = 1.5 kg

km = 10−6 Nm · s2

ct = 0.50 Ns/m

rmin = 20m

l = 0.2m

cr = 0.10 Nm · s2

I = diag([5 5 8]e-3) kg ·m2

kf = 5.0× 10−6 N · s2

g = [0 0 9.81]T m/s2

(6.11)

There are four key parameters which dominates the simulation results, namely the ro-
tational inertia (RI) I, the translation drag coefficient ct, the communication delay ∆tdelay,
and the minimum separation distance rmin.

• I = diag(Ix, Iy, Iz): We approximate the rotational inertia (RI) by approximating the
3DR Solo as a solid cylinder of radius 0.1m and height 0.1m. The calculation follows
from [8], and the system identification results in [14] validates our calculation.

• ct: Instead of adopting results from [14], which yields an unrealistically large terminal
speed, we picked a more conservative value of 0.5Ns/m, which yields a terminal hor-
izontal speed of vmax = 50m/s, by assuming a maximum horizontal thrust of

√
3mg

and translation drag of ctvmax [84].
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• ∆tdelay: In all the feasible collaborative SAA technologies discussed in Section 6.1,
ADS-B gives the largest bounded communication delay, 2.0s. We use this conservative
value throughout the simulations, to approximate the worst-case behavior [5, 43].

• rmin: The minimum separation distance rmin is tunable to satisfy future minimum
separation standards. It is set 20m, or twice the size of a typical helicopter, throughout
the simulations.

The simulation is expected to be realistic, although a hardware implementation is neces-
sary to confirm the effectiveness of the hybrid controller. It will be left as future work.

6.4.1 Safety Controllers

6.4.1.1 Horizontal Safety Controller

In this section, two set of simulation results are presented. First, we examine how the 2D
safety controller behaves when applied to a full 3D quadrotor model. Then, we present the
WCMMD and WCERT results after running Algorithm 1 defined in Section 6.3.3.3, covering
all practical accelerations and relative velocities for our specific setup. All safety sets are
produced by griding 120 points evenly for θ∗h ∈ [0, θc] ∪ [π − θc, π].

Behavior: Figure 6.4 shows the behavior of the safety controller. Two factors, namely
the magnitude of the maximum acceleration and drag force, are investigated. The dashed
red lines are the reference signals generated from the high-level safety controller, while the
black solid lines are the tracking signals from the low-level sliding mode angle controllers
[14]. The quadrotor is originally at rest. The parameters are

amax = [2 5 10]m/s2 v = 70m/s

In Figure 6.4a, when amax is low, say 2m/s2, the constant acceleration assumption holds
very well, but in sacrifice it takes a long time (4.9s) to finish the avoidance maneuver. At
the beginning of the avoidance maneuver, the tracking delay between the dashed red line
and the solid black line is 0.28s, which results in a ERT of 0.1s.

The avoidance duration is shortened to half as much (2.6s) when amax = 10m/s2, but the
desired pitch θd has some variation at the beginning and the end of the avoidance. The vari-
ation exists because the quadrotor could not achieve the desired acceleration instantaneously
due to rotational inertia (RI). Nonetheless, the assumption of applying constant maximum
acceleration remains valid. The tracking delay is 0.56s, which gives an ERT of 0.2s. When
amax = 5m/s2, the result is somewhere in between. As amax increases, the tracking delay
increases, and ERT increases almost propotional to the tracking delay. Therefore, without
drag, ERT is solely determined by the tracking delay at the beginning of the avoidance
maneuver.

In the normal case with drag force (Figure 6.4b), the variation in desired pitch (θd) is
worse, although the desired roll (φd) stays almost constant. θd is generally increasing during
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(a) without drag force (b) with drag force

Figure 6.4: The 2D optimal safety control is applied to a 3D quadrotor model.

the avoidance maneuver, especially at amax = 10m/s2. It makes sense because as the velocity
goes up, the drag force goes up, and to generate an equivalent amax, a larger pitch angle is
needed. The avoidance duration is longer, range from 7.9s (when amax = 2m/s2) to 3.1s
(when amax = 10m/s2).

However, with drag, ERT is not a strong function of tracking delay anymore. With similar
tracking delays, the ERT is 1.54s when amax = 2m/s2 and 0.42s when amax = 10m/s2. This
result is the complete opposite to the no-drag case. As amax increases, the drag force increases
faster, and to counteract the drag, a larger ERT is required.

Worst-case scenarios: In this section, we discuss the simulation results of the safety
controller considered in Section 6.3. The WCMMD and WCERT are observed for a range of
maximum horizontal relative velocity v and maximum horizontal accelerations amax. In these
worst-case scenarios, the quadrotor and helicopter are heading directly to each other. The
effect of rotational inertia (RI), drag forces, and communication delay described in Section
6.4 are evaluated.

The ranges for amax and v are chosen for reasons. A quadrotor can typically produce a
maximum thrust of twice as its weight, or 2mg, which can generate a maximum horizontal
acceleration of 17m/s2 when tilting at 60◦ at a constant altitude. Therefore, we picked amax
to be between 5 and 15m/s2. A commercial helicopter typically has a maximum horizontal
speed of 70m/s, while a quadrotor has a maximum cruise speed of 30m/s. Therefore, we set
the maximum horizontal relative speed v to be between 50 and 100m/s.

For clarity, we only present WCMMD results for three relative speeds (Figure 6.5). Fig-
ure 6.5a shows the WCMMD result by using the horizontal safety controller on a kinematic
quadrotor. It serves as the base of comparison. Figure 6.5b, 6.5c, and 6.5d give the WCMMD
results by using the horizontal safety controller on a quadrotor with RI, drag, and commu-
nication delay, respectively. The axis ranges are the same as Figure 6.5a for comparison
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(a) kinematics only (b) with RI

(c) with RI and drag (d) with RI, drag, and comm. delay

Figure 6.5: Summary of WCMMD for the horizontal safety controller, as defined in Section
6.3.1 (rmin = 20m).

(a) with RI (b) with RI and drag

Figure 6.6: Summary of WCERT for the horizontal safety controller, as defined in Section
6.3.3.3 (rmin = 20m).
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purpose.
The WCMMD increases faster and faster from the lower-right corner to the upper-left

corner. In the lower-right corner, when amax is high and v is low, we get small WCMMD
ranging from 93m (no drag) to 202m (with drag and communication delay). In the upper-left
corner, with small amax and large v, we get large WCMMD ranging from 293m to 548m.
Compared with Figure 6.5a, RI gives a maximum of 10m, or 3%, increase in the WCMMD.
The WCMMD increments due to drag are 55m, or 18%, in the upper left corner and 10m,
or 10%, in the lower right corner. Lastly, depending on the relative velocity v, the WCMMD
increment of communication delay range from 100m (30%) to 200m (60%).

The more interesting result comes in the WCERT maps. First, the WCERT values
without drag is always smaller than the ones with drag. The WCERT ranges from 0.10s
to 0.22s without drag and from 0.30s to 0.65s with drag. Second, the two WCERT maps
in Figure 6.6 show opposite patterns with respect to amax. With RI only (Figure 6.6a), the
WCERT increase as amax increases. It is because a larger amax implies a larger tilting angle
(φd and θd), which takes more time for the sliding mode controllers to rotate the quadrotor.
With both RI and drag (Figure 6.6b), the WCERT decreases as amax increases. It says
that as amax gets larger, it becomes easier to overcome the drag, and the WCERT becomes
smaller. To take into account the communication delay, one can simply add the delay (2.0s
for ADS-B) on top of Figure 6.6.

6.4.1.2 Vertical Safety Controller

In this section, we present results for the vertical safety controller. For a cylindrical safety
set with radius rmin and height hmin equal to 20m, and a maximum vertical acceleration of
1g, the WCMMD result is shown in Figure 6.7. Unlike the horizontal controller, the result is
purely a function of the relative horizontal speed v. When v = 100m/s, we need a WCMMD
of 220m with drag and 365m with drag. Drag gives WCMMD increments from 20m (17%)
to 40m (18%). The 1sec communication delay adds the largest increments in WCMMD, and
the drag adds about 40m. Rotational inertia has no effect because the quadrotor does not
rotate in this scenario. Nonetheless, the WCMMD due to drag and delay are consistent with
the results in Figure 6.5b, 6.5c, and 6.5d, respectively, at a constant acceleration of 10m/s2.

Table 6.1 shows the results for WCERT and WCMVD as defined in Section 6.3.2. The
WCERT is zero without drag and 0.42sec with drag. In this case, since the quadrotor
does not rotate when performing vertical avoidance, there is no tracking delay, and thus no
WCERT without drag. With drag, WCERT only depends on maximum acceleration amax,
which is a constant av,max, thus we have a constant WCERT.

Notice that the WCMVD with drag (26.6m) is smaller than without drag (39.3m). The
difference is produced by drag. Without drag, the quadrotor in minimum thrust is almost
experiencing free fall, with only minimum thrust 4kfω

2
r,min to maintain the quadrotor pose.

Constraint in (6.7) implies that the quadrotor stabilizes itself at an altitude deviation of
about 2hmin by symmetry. With drag, we can actually stop the quadrotor faster because
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Table 6.1: The WCERT and WCMVD results for the vertical safety controller.

WCERT [s] WCMVD [m]

w/o drag 0.00 39.3

w/ drag 0.42 26.6

Figure 6.7: The WCMMD result for the vertical safety controller (rmin = hmin = 20m).

the vertical drag also contributes to the deceleration. Therefore, the conservative WCMVD
is from the no-drag case.

6.4.1.3 Comparison

We see a trade off when the practical constraints of the horizontal and vertical controllers are
considered. Compared with the vertical controller, the horizontal controller has demanding
requirements on the tilting angle, but it does not lose altitude given enough thrust. Therefore,
both controllers have advantages in different applications. When the quadrotor is flying over
a wide-open area or is heavily loaded, the vertical controller is preferred since losing 50m
of altitude would not affect the navigation too much, but tilting the quadrotor by 45◦ is
difficult. On the other hand, if the quadrotor is flying in areas with high obstacle density
without much payload, the horizontal controller becomes preferable. In this case, losing 10m
of altitude may force the quadrotor to hit a tall building or tower.

6.4.2 Hybrid Controller

Here we present a typical package-delivery scenario with the horizontal safety controller. A
quadrotor is typically designed to produce a maximum thrust of 2mg, which theoretically
can give a maximum horizontal acceleration of 14m/s2 when hovering. In this scenario, we
use a more conservative value of 10m/s2. Figure 6.8 shows a high-speed high-acceleration
scenario. In Figure 6.8a, the quadrotor takes off from the origin and is trying to get to the



CHAPTER 6. COLLISION AVOIDANCE WITH MANNED AIRCRAFT 118

point (X, Y, Z) = (500m, 500m, -100m) when a helicopter is flying toward it in a smooth
spline. In this scenario, the parameters are

vheli = 70m/s vquad = 20m/s v = 90m/s
rmin = 20m amax = 10m/s2

By employing the safety controller, the quadrotor successfully avoids the helicopter and
gets to the final destination (Figure 6.8a) with relative distances to the helicopter always less
than the threshold . Assume that there is no communication delay, when the WCERT is set
to 0.1s, the minimum relative distance between the two vehicles is 20.6m, which is barely
larger than the nominal threshold of 20m, indicating that the safety controller performs
optimally. Note that if the vehicles are equipped with ADS-B, the WCERT should take into
account the 2.0s communication delay, giving a WCERT value of 2.1s.

Figure 6.9 shows the time history of the horizontal command and control signals. In the
X, Y , and Z time history plots, the red dashed lines indicate desired destination, and the
black solid lines give the actual flight trajectory. In the θ, φ, and ψ plots, the blue dashed
lines show the angle command generated from either the MPC or safety controller, and the
red dashed lines give command from the sliding position controller (see Section 5.3.3). At
the beginning, trajectory following via MPC is enabled, and the actual trajectory (solid
black) follow the MPC acceleration commands. At time t = 17.4s, the quadrotor switches
to the safety (angle) control until t = 19.9s, which gives an avoidance duration of 2.5s. The
tracking delay in pitch (θ) is long (∼ 0.5s) since the error between the desired pitch and
the actual pitch is large at the beginning of the avoidance. After arriving at the destination
(t ≥ 43.8s), the quadrotor swiches to position control. Overall, the quadrotor follows the
trajectory closely in MPC control mode.

The efficiency of the safety controller could also be evaluated by the total flight time. In
this scenario, the total flight time without avoidance is 58s, and that with avoidance is 65s,
which gives an overall navigation delay of 7s. After deducting the 2.5s avoidance maneuver,
the navigation time is increased by 4.5s. If the destination were 10 miles away, the total
flight time would be around 13 minutes. The optimality ensures that the extra time spent
on avoidance is not significant compared to the whole trip.
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(a) Horizontal paths. (b) Relative distance time history.

Figure 6.8: The quadrotor avoids a helicopter on the way to a destination.
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Figure 6.9: Time history of reference and control signals.
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Chapter 7

Summary and Recommendations

7.1 Summary

NASA Unmanned Traffic Management (UTM) is a new research field building the fundamen-
tal framework for future unmanned aircraft system (UAS) flight operations. In this disserta-
tion, we make an attempt to address the flight planning problem for a single multi-rotor UAS.
We have demonstrated that the flight planning system is able to generate energy-optimal 4D
trajectories for a UAS, given deterministic environmental information. The system mainly
composes of a power consumption model at steady state and an optimal routing engine.
This is the first time, to our knowledge, that the effect of wind on energy is optimized for a
multi-rotor UAS. The flight planning trajectory is verified in the in-flight stage. We build
a feedback controller capable of performing trajectory following as well as collision avoid-
ance with a single manned aircraft. Together, they provide a comprehensive framework to
perform a single UAS operation.

The main goal of the flight planning system is to assess the energy requirements, specifi-
cally the energy demand, to complete a mission safely (Chapter 2). In Chapter 3, we develop
a multirotor power consumption model to perform the energy assessment. We focus on the
steady state behavior of the UAS. The model consists of three components, namely induced
power, profile power, and parasite power. We designed three experiments to identify the
model parameters and validated the model for different airspeeds and payloads. Although
we modeled the UAS as a single-propeller vehicle, the identification and validation results
give good fitting results with small percent errors. Lastly, we use the model to simulate
and illustrate how speed, altitude, and regional variation affect the energy consumption of
a small UAS.

To minimize the energy consumption or trip time in a flight, we formulated an optimal
control problem for UAS flight planning (Chapter 4). We start by formulating a general
optimal control problem with cost and constraints. This problem is in general hard to solve
due to the anisotropic nature of wind, meaning that power cost can vary depending on
the navigation direction. But we show that by fixing either the ground speed or airspeed,
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we can simplify the general formulation and solely optimize the navigation direction. The
optimal path is solved numerically by the Ordered Upwind Method (OUM). By running
the algorithm in elevated and smoothed terrain surfaces, or digital elevation models (DEM),
and 3D wind fields, we can produce 4D trajectories capable of avoiding pre-specified static
obstacles as well as achieving significant energy savings in a realistic scenario.

We then demonstrate the feasibility of the trajectories by designing controllers to fol-
low them during flights. In general, it is difficult to follow a time-stamped trajectory due
to re-planning triggered by external disturbances and uncertainties. Instead, we focus on
speed-stamped trajectories. A two-level control architecture is proposed in Chapter 5. The
high-level MPC controller takes cross-track and speed errors as inputs and issues accelera-
tion commands as outputs. The acceleration commands are then converted to Euler angle
commands. The low-level sliding controllers take the angle commands as reference inputs
and generate the necessary forces and moments, or motor RPM’s.

Lastly, we present a safety controller in the context of high-speed manned-unmanned
aircraft collision avoidance. A computationally feasible 2D optimal safety controller min-
imizing the avoidance duration [44] is modified to be suitable for a high-speed quadrotor
with rotational inertia and aerodynamic drag. The combined hybrid controller is capable of
performing optimal avoidance when flying to a destination autonomously.

7.2 Recommendations

This dissertation is an attempt to address the problem of fully autonomous UAS flight
management. We sketched down a set of pre-flight and in-flight tasks and proposed an
initial set of solutions to each task. There are still many open problems to be addressed.

First, the flight planning procedure can be further optimized. The current flight planning
system uses a brute force approach to optimize altitude and vehicle speed. We believe that
by incorporating the vertical structure of wind, it is possible to simplify the altitude search
process. Lower altitude flights are in general energy-saving but more risky due to obstacles.
This trade-off could be studied further. For speed optimization, we only look for constant
ground speed or constant airspeed trajectories. In reality, there could be better solutions
with varying speeds along the trajectories. This part could be investigated in the future.
Another big missing piece in this dissertation is battery capacity estimation. In Chapter 2,
we assume that the battery capacity is perfectly known. But in reality, it is a complicated
topic affected by many factors. If battery is the main energy source for UAS operations in
the future, we need further research to address this issue. The flight duration of a multirotor
is rather short. To overcome this bottleneck, exploring energy sources with higher energy
density may also be a good research direction.

The most urgent task is to improve the quality of environmental data. Currently, the
wind data resolution is not satisfactory for UAS operations. The best wind data we could
find is simulated by the EFMH research lab [32]. Second, the fidelity of terrain and wind
data publicly available is largely unknown [135]. Validation methods or assessments are
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needed to quantify the statistics of such data. If statistical information such as variance or
probabilistic distributions were available, we could try another promising routing solution
based on risk-averse control, to further quantify the required energy contingency.

To ensure safety, energy estimation is critical. In this dissertation, we focus exclusively on
the power consumption modeling of multirotor UAS. In reality, there are many other types
of UASs. To further apply the optimal flight planning framework to UTM, we shall include
other existing models for fixed wings and other aircraft accordingly. Another approach is to
require UAS manufacturers to develop aircraft performance curves for their vehicles, which
is the current practice in manned aviation. Second, instead of attaching a pitot tube, we
could use a model to estimate wind. But this approach requires an accurate dynamic model
of the aircraft, especially lift and drag parameters. Online parameter adaptation algorithms
with some linear models can be applied to estimate such parameters. Recent development
in neural network may be another feasible approach.

The optimal control problem for trajectory generation is rather preliminary. The biggest
issue is that the current algorithm does not include vehicle dynamical constraints. Although
the trajectories is inside a smoothed terrain surface, there is no guarantee that the UAS
can follow the trajectory closely even without uncertainty. On approach to address this
issue is to project the 3D OUM paths and obstacle information in the 2D horizontal plane,
and formulate another optimization problem offline to generate cubic splines with minimal
cross-track errors. The current MPC trajectory horizon is implemented in a similar manner
but performed online. During the process, the speed commands can be modified accordingly.
Second, the computation speed of OUM is also not satisfactory. The optimal cost map in
Figure 4.12 takes minutes to hours to compute in Julia. If the running time could be reduced
to a few seconds, we may possibly perform real-time re-routing and consider time-varying
wind fields. Third, instead of restricting the paths in an uneven 2D surface, we may compute
the paths in 3D by allowing a range of altitudes. But again, it requires a significant boost of
computation speed. Lastly, to use OUM, the current work assumes known ground speed as
a function of vehicle position. We can also explore the possibility to relax this assumption.

For the trajectory following controllers (Chapter 5), the main issue is to increase the
robustness in the MPC controller. A simple extension is to use Stochastic MPC (SMPC)
[90]. In SMPC, we could use long-run expected average cost, and the constraints can be
interpreted probabilistically, allowing for a small violation probability. Second, we need to
further quantify the patterns and bounds of the wind uncertainty, and to define the largest
wind disturbance a UAS can possibly reject. If wind is too large in a certain region, it should
be handled in the planning stage.

Lastly, the safety controller presented in Chapter 6 shall be considered as the last effort
to resolve collision after everything else has failed. In reality, collisions can be avoided well
before they become safety threatening. This is especially true with the introduction of ADS-
B. Another good approach is to provide structures, such as platooning on air highways [20],
to the reduce the complexity of collision avoidance computations. In intersections, assigning
priority could be another promising solution [19, 139]. In future UTM, a variety of safety
controllers with different capabilities shall be integrated in a state machine, to ensure the
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redundancy of the safety system.
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Part III

Appendix
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Appendix A

Energy Consumption vs. Trip
Duration

This appendix shows the additional simulation results in Section ??.

(a) Optimal energy consumptions. (b) The corresponding optimal paths.

(c) The corresponding flight durations.

Figure A.1: Repeat the iteration process for a set of ground speeds for another origin.
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(a) Optimal energy consumptions.

(b) The corresponding optimal paths.

(c) The corresponding flight durations.

Figure A.2: Repeat the iteration process for a set of ground speeds for another origin.
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(a) Optimal energy consumptions.

(b) The corresponding optimal paths.

(c) The corresponding flight durations.

Figure A.3: Repeat the iteration process for a set of ground speeds for another origin.
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Appendix B

Exhaustive Search Results

This appendix shows the exhaustive search results in Section 2.6.7.

Figure B.1: IRIS+ with one battery: 14N self weight.
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Figure B.2: IRIS+ with two battery: 17N self weight.

Figure B.3: IRIS+ with three battery: 20N self weight.
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Figure B.4: IRIS+ with four battery: 23N self weight.

Figure B.5: IRIS+ with six battery: 29N self weight.
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Appendix C

Derivation of Power Components

C.1 Induced Power

From energy conservation,

Pi = TV =
1

2
ṁV 2

∞ −
1

2
ṁV 2

0

=
1

2
ṁ(V∞ − V0)(V∞ + V0)

(C.1)

From momentum conservation,

T = ṁ (V∞ − V0) (C.2)

Substitute equation (C.2) into (C.1) and simplify, we have

V =
1

2
(V∞ + V0) (C.3)

The mass flow rate is,

ṁ = ρAV (C.4)

Substitute (C.4) into (C.2), and then substitute (C.3), we get

T =
1

2
ρA(V 2

∞ − V 2
0 ) (C.5)

Solve for V∞, we have

V∞ =

√
2T

ρA
+ V 2

0
(C.6)

Therefore, by substituting (C.3) to (C.1) and then substituting (C.6), we obtain the
analytical expression for the idealized induced power in equation (3.1).
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Appendix D

Derivation of the HJB Equation

In this section, we present a derivation of (4.5). The process is similar to the one presented
in [9].

We start from the cost function in equation (D.1). Note that because our cost is energy,
there is no terminal cost, and only stage costs are considered.

J(x,u) =

∫ sf

s0 C

g(x(s),u(s))ds (D.1)

Define the value function at x(s) to be

V (x) = min
u∈U

J(x,u) (D.2)

Then Bellman’s optimality principle can be written as

V (x(s)) = min
u∈U

{V (x(s+ ∆s)) +

∫ s+∆s

s

g(x(s̄),u(s̄))ds̄)}

V (x(sf )) = 0

(D.3)

We introduce the following notation to discretize the state and control:

xk := x(s0 + k∆s) = x(s)

uk := u(s0 + k∆s) = u(s)
(D.4)

Define the discrete approximation of the value function V (x(s)) as Ṽ (xk), we can re-write
equation (D.3) as

0 = min
uk∈U

{
Ṽ (xk+1)− Ṽ (xk)

∆s
+ g(xk,uk)

}
(D.5)

Let ∆s→ 0, then we have
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0 = min
u∈U

{
dV (x)

ds
+ g(x,u)

}
(D.6)

If we expand the derivative term dV
ds

, and substitute the dynamic equation dx
ds

= u
(equation (4.21b)), then equation (D.6) becomes

0 = min
u∈U

{
∂V

∂s
+∇xV (x)T

dx

ds
+ g(x,u)

}
= min

u∈U

{
∂V

∂s
+∇xV (x)Tu + g(x,u)

}
= min

u∈U

{
∇xV (x)Tu + g(x,u)

}
(time invariant case)

(D.7)

The term ∂V
∂s

= 0 because the wind field is assumed time invariant and the parameter s
is a parametrization of time, which results in equation (4.5).
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Appendix E

Derivation of Avoid Set Boundary

Figure E.1 shows the trajectory from (x12(t0), y12(t0)) to (x12(0), y12(0)). Decompose the
trajectory along and perpendicular to the direction of θ∗1 into d1 and d2.

Along the direction in d1, the initial speed is vi = v12(t0)sinθ∗1, the final speed is vf = 0,
and it is under constant acceleration −amax. Along the direction in d2, the vehicle is under

uniform linear motion at constant speed (v12(t0)cosθ∗1), and the time t0 =
(
v12(t0)sinθ∗1

amax

)
.

Therefore, we have

Figure E.1: Backward dynamics diagram.
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d1 =
(v12(t0)sinθ∗1)2

amax

d2 = (v12(t0)cosθ∗1)

(
v12(t0)sinθ∗1

amax

)
Lastly, by geometry,

x12(t0)− d1cosθ
∗
1 + d2sinθ

∗
1 = rmincosθ

∗
1

y12(t0)− d1sinθ
∗
1 − d2cosθ

∗
1 = rminsinθ

∗
1

which results in equation (6.5).
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[106] Gonzalo R Rodŕıguez-Canosa et al. “A real-time method to detect and track moving
objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera”. In:
Remote Sensing 4.4 (2012), pp. 1090–1111.

[107] Ashton Roza and Manfredi Maggiore. “Path following controller for a quadrotor heli-
copter”. In: American Control Conference (ACC), 2012. IEEE. 2012, pp. 4655–4660.

[108] Martin Russ et al. “LIDAR-based object detection on small UAV: Integration, Ex-
perimentation and Results”. In: AIAA Infotech Conference. 2012.

[109] Megan S Ryerson, Mark Hansen, and James Bonn. “Fuel consumption and operational
performance”. In: Transportation Research Part D (2011), pp. 305–314.

[110] Megan S Ryerson et al. “Landing on empty: estimating the benefits from reducing
fuel uplift in US Civil Aviation”. In: Environmental Research Letters 10.9 (2015),
p. 094002.

[111] Sagetech. url: http://www.sagetechcorp.com/.

[112] L Rodriguez Salazar et al. “A Novel System for Non-Cooperative UAV Sense-And-
Avoid”. In: proceedings of European Navigation Conference. 2013.

[113] Hermann Schlichting. “Boundary-layer theory”. In: (1968).

[114] Tom Schouwenaars et al. “Mixed integer programming for multi-vehicle path plan-
ning”. In: European control conference. Vol. 1. 2001, pp. 2603–2608.

[115] James A Sethian. “Fast marching methods”. In: SIAM review 41.2 (1999), pp. 199–
235.

[116] James A Sethian and Alexander Vladimirsky. “Ordered upwind methods for static
Hamilton–Jacobi equations: Theory and algorithms”. In: SIAM Journal on Numerical
Analysis 41.1 (2003), pp. 325–363.

[117] Alex Shum, Kirsten Morris, and Amir Khajepour. “Convergence rate for the ordered
upwind method”. In: Journal of Scientific Computing 68.3 (2016), pp. 889–913.



BIBLIOGRAPHY 145

[118] Jorge Estrela da Silva and Joao Borges de Sousa. “A dynamic programming approach
for the motion control of autonomous vehicles”. In: Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE. 2010, pp. 6660–6665.

[119] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control. Vol. 60. Prentice-
Hall Englewood Cliffs, NJ, 1991.

[120] Tracy Lorraine Smith et al. “11.1 CONVECTION FORECASTS FROM THE HOURLY
UPDATED, 3-KM HIGH RESOLUTION RAPID REFRESH (HRRR) MODEL”. In:
(2008).

[121] Tracy Lorraine Smith et al. “Convection forecasts from the hourly updated, 3-km
High Resolution Rapid Refresh Model”. In: Preprints, 24th Conf. on Severe Local
Storms, Savannah, GA, Amer. Meteor. Soc. Vol. 11. 2008.

[122] Manuel Soler. Commercial aircraft trajectory planning based on multiphase mixed-
integer optimal control. Omm Editorial, 2013.

[123] Bongsob Song and J Karl Hedrick. Dynamic surface control of uncertain nonlinear
systems: an LMI approach. Springer Science & Business Media, 2011.

[124] Banavar Sridhar, Hok K Ng, and Neil Y Chen. “Aircraft trajectory optimization and
contrails avoidance in the presence of winds”. In: Journal of Guidance, Control and
Dynamics 34.5 (2011), pp. 1577–1583.

[125] PB Sujit, Srikanth Saripalli, and Joao Borges Sousa. “Unmanned aerial vehicle path
following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehic-
less”. In: Control Systems, IEEE 34.1 (2014), pp. 42–59.

[126] Ashit Talukder and Larry Matthies. “Real-time detection of moving objects from
moving vehicles using dense stereo and optical flow”. In: Intelligent Robots and Sys-
tems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on.
Vol. 4. IEEE. 2004, pp. 3718–3725.

[127] Takafumi Taniguchi, Luka Eciolaza, and Michio Sugeno. “Quadrotor control using dy-
namic feedback linearization based on piecewise bilinear models”. In: Computational
Intelligence in Control and Automation (CICA), 2014 IEEE Symposium on. IEEE.
2014, pp. 1–7.
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